K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

\(x^4+1=x^4+ax^3+bx^2-ax^3-a^2x^2-abx-bx^2-abx-b^2+a^2x^2+2abx+b^2+1\)

\(=x^2\left(x^2+ax+b\right)-ax\left(x^2+ax+b\right)-b\left(x^2+ax+b\right)+a^2x^2+2abx+b^2+1\)

\(=\left(x^2-ax-b\right)\left(x^2+ax+b\right)+\left(ax+b\right)^2+1\)

Ta có : \(x^4+1⋮x^2+ax+b\Leftrightarrow\left(ax+b\right)^2+1=0\)( phần dư = 0 )

Mà \(\left(ax+b\right)^2+1\ge1>0\)

Vậy không có a,b thỏa mãn đề bài

5 tháng 4 2020

Đặt f(x)=\(\left(x^2+ax+b\right)\left(x^2+mx+n\right)\)

\(\Leftrightarrow\hept{\begin{cases}a=\sqrt{2}\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=-\sqrt{2}\\b=1\end{cases}}\)

12 tháng 4 2022

-Áp dụng định lí Bezout:

\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)

\(\Rightarrow1+6+7-a+b=0\)

\(\Rightarrow a-b=14\left(1\right)\)

\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)

\(\Rightarrow16+48+28-2a+b=12\)

\(\Rightarrow2a-b=80\left(2\right)\)

-Từ (1) và (2) suy ra: \(a=66;b=52\)

13 tháng 4 2022

bạn ơi, tại sao lại là P(-2) ạ??

 

10 tháng 10 2019

dùng bezout đi

thay x=2;-2 ra hpt

10 tháng 10 2019

Giả sử : x2 - 4 = 0 \(\Rightarrow\)x2 - 22 = 0\(\Rightarrow\)( x - 2 )( x + 2 ) = 0 \(\Rightarrow\)x = 2 và x = - 2 nên x có 2 nghiêm là x = 2 và x = - 2

Ta có : 

f( 2 ) = 24 + 2a + b = 16 + 2a + b

f( - 2 ) = ( - 2 )4 - 2a + b = 16 - 2a + b

Để f( x ) \(⋮\)g( x ) thì 16 + 2a + b = 0 ( 1 )và 16 - 2a + b = 0 ( 2 )

Ta lấy ( 1 ) - ( 2 ) ta được : 32 + 2b = 0

                                  \(\Rightarrow\)2b = - 32

                                  \(\Rightarrow\)b = - 16  

Thay b = - 16 vào ( 2 ) ta được :

            16 - 2a - 16 = 0

\(\Rightarrow\)- 2a = 0 

\(\Rightarrow\)a = 0

Vậy : a = 0 và b = - 16

AH
Akai Haruma
Giáo viên
26 tháng 6 2024

Lời giải:

$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$

$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$

$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$

$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$

Để $f(x)\vdots g(x)$ thì:

$2(a+3)x-2(a+4)+b=0,\forall x$

$\Rightarrow a+3=-2(a+4)+b=0$

$\Rightarrow a=-3; b=2$

3 tháng 11 2019

Đa thức x- 3x + 2 có nghiệm \(\Leftrightarrow\)x- 3x + 2 = 0

\(\Leftrightarrow x^2-2x-x+2=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

1 và 2 là hai nghiệm của đa thức x- 3x + 2

Để f(x) = x+ ax+ bx - 1  chia hết cho x- 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x+ ax+ bx - 1

Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1

Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)

Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)

\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)

Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

3 tháng 2 2019

\(x^2-3x+2\)

\(=x^2-2x-x+2\)

\(=x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x-1\right)\)

Để \(f\left(x\right)=\left(x^4+ax^4+bx-1\right)⋮\left(x^2-3x+2\right)\)thì :

\(f\left(x\right)=\left(x^4+ax^4+bx-1\right)=\left(x^2-3x+2\right)\cdot Q\)

\(\Leftrightarrow x^4+ax^4+bx-1=\left(x-2\right)\left(x-1\right)\cdot Q\)

Vì đẳng thức trên đúng với mọi x, do đó :

+) Đặt x = 2 ta có pt :

\(2^4+a\cdot2^4+b\cdot2-1=\left(2-2\right)\left(2-1\right)\cdot Q\)

\(\Leftrightarrow16a+2b+15=0\)

\(\Leftrightarrow16a+2b=-15\)(1)

+) Đặt x = 1 ta có pt :

\(1^4+a\cdot1^4+b\cdot1-1=\left(1-2\right)\left(1-1\right)\cdot Q\)

\(\Leftrightarrow a+b=0\)

\(\Leftrightarrow a=-b\)(2)

Thay (2) vào (1) ta có :

\(16\cdot\left(-b\right)+2b=-15\)

\(\Leftrightarrow-14b=-15\)

\(\Leftrightarrow b=\frac{15}{14}\)

\(\Rightarrow a=\frac{-15}{14}\)

Vậy....

DD
9 tháng 12 2021

Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được: 

\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)

Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì: 

\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).