K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2023

Bạn tự vẽ hình nhé.

a. 

Xét tứ giác AEBD có:

AH = HB (H là trung điểm của AB)

HE = HD (vì E và D đối xứng với nhau qua H)

=> AEBD là hình bình hành.

Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)

Từ trên suy ra: AEBD là hình chữ nhật.

b.

Vì AEBD là hình chữ nhật nên ta có:

- AE // BD và AE = BD (1)

mà: BC // AE và BD = DC (2)

Từ (1), (2) suy ra: ACDE là hình bình hành.

c.

có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)

d.

Để AEBD là hình vuông thì AD = BD

=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.

Mà AB = AC

=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.

10 tháng 12 2016

Giải:

a) Ta có AM=MB và EM=MD ( đối xứng ) =>AEBD là hình bình hành

mà góc D = 90 (độ) => AEBD là hình chữ nhật

b) từ câu a =>AE//DC ; mà DC=DB (AD là đường cao của tam giác cân ABC =>là AD cũng đường trung tuyến) 

=>ACDE là hình bình hành

c) để tứ giác AEBD là hình vuông thì:

như câu a thì AEBD là hình chữ nhật =>điều hiện là:AD=BD mà AD=BD =>tam giác ABC phải là tam giác vuông cân

d) S tam giác ABC= AD.BD/2 = AD.BD    1

   S hình chữ nhật ABDE= AD.BD             2

​Từ 1 và 2 =>S tam giác ABC = S hình chữ nhật ABDE (đpcm)


A E B D C M

26 tháng 1 2022

a) Xét tứ giác AMCK:

I là trung điểm của AC (gt).

I là trung điểm của MK (K là điểm đối xứng với M qua I).

Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)

=> Tứ giác AMCK là hình chữ nhật (dhnb).

b) Xét tam giác ABC cân tại A: AM là đường cao (gt).

=> AM là trung tuyến (Tính chất tam giác cân).

=> M là trung điểm của BC.

=> BM = MC.

Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).

          BM = MC (cmt).

=> AK = MC = BM.

Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).

=> AK // BM.

Xét tứ giác AKMB:

AK // BM (cmt).

AK /= BM (cmt).

=> Tứ giác AKMB là hình bình hành (dhnb).

c) Tứ giác AMCK là hình vuông (gt).

=> AK = AM (Tính chất hình vuông).

Mà AK = BM (cmt).

=> AM = BM = AK.

Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).

=> AM = BM = AK = \(\dfrac{1}{2}\) BC.

Xét tam giác ABC cân tại A: 

AM = \(\dfrac{1}{2}\) BC (cmt).

=> Tam giác ABC vuông cân tại A.

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:

a. $M,N$ đối xứng nhau qua $O$ nghĩa là $O$ là trung điểm $MN$

Tứ giác $AMBN$ có 2 đường chéo $AB, MN$ cắt nhau tại trung điểm $O$ của mỗi đường nên $AMBN$ là hbh $(1)$

Mặt khác, tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao

$\Rightarrow AM\perp BC$ nên $\widehat{AMB}=90^0(2)$

Từ $(1); (2)\Rightarrow AMBN$ là hình chữ nhật

b. Vì $AMBN$ là hcn nên $BM\parallel AN$ và $BM=AN$

Mà $B,M,C$ thẳng hàng và $BM=MC$ nên:

$AN\parallel CM, AN=CM$

$\Rightarrow ACMN$ là hình bình hành 

c. 
$ACMN$ là hbh nên $MN\parallel AC$

Để $ACMN$ là hình vuông thì $MN\perp AB$

$\Leftrightarrow AC\perp AB$

$\Leftrightarrow ABC$ là tam giác vuông tại $A$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:a) 

$M$ là trung điểm $AB$. $E$ đối xứng với $D$ qua $M$ nên $M$ là trung điểm $DE$. Như vậy, xét tứ giác $ADBE$ có 2 đường chéo $AB$ và $ED$ cắt nhau tại trung điểm $M$ của chính nó nên $ADBE$ là hình bình hành. Mà $\widehat{D}=90^0$ nên $ADBE$ là hình chữ nhật.

b) 

Vì $ADBE$ là hình chữ nhật nên $AE=BD$ và $AE\parallel BD$.

$ABC$ cân tại $A$ nên đường cao $AD$ đồng thời là đường trung tuyến. Do đó $BD=DC$

Suy ra $AE\parallel DC$ và $AE=DC$. Do đó $ACDE$ là hình bình hành.

c) 

Ta thấy: $MD=\frac{1}{2}AC$ (tính chất đường trung bình)

$MB=\frac{1}{2}AB=\frac{1}{2}AC$

$\Rightarrow MB=MD\Rightarrow \widehat{MBD}=\widehat{MDB}$

$\Rightarrow 180^0-\widehat{MBD}=180^0-\widehat{MDB}$

$\Leftrightarrow \widehat{KBC}=\widehat{MDC}$ 

Xét tam giác $KBC$ và $MDC$ có:

$\widehat{KBC}=\widehat{MDC}$ (cmt)

$\frac{KB}{BC}=\frac{AB}{BC}=\frac{\frac{AB}{2}}{\frac{BC}{2}}=\frac{MD}{DC}$

$\Rightarrow \triangle KBC\sim \triangle MDC$ (c.g.c)

$\Rightarrow \frac{KC}{MC}=\frac{BC}{DC}=2$

$\Rightarrow KC=2MC$ (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined

12 tháng 12 2021

a: Xét tứ giác ADCH có 

I là trung điểm cuả AC

I là trung điểm của HD

Do đó: ADCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên ADCH là hình chữ nhật

9 tháng 10 2019

A A A B B B C C C D D D M M M E E E

a/ Ta có MD là đường tb tam giác BAC nên ME//AC(1)

Mà vì \(\Delta AEM=\Delta BDM\left(c.g.c\right)\Rightarrow\widehat{AEM}=\widehat{BDM}\Rightarrow\)AE//BC(2)

Từ (1) và (2) suy ra ngay ĐPCM

b/ Từ giả thiết là D,E và A,B đối xứng với nhau qua điểm M suy ra AEBD là hbh

Từ đó để AEBD là hình chữ nhật thì MD phải vuông góc với BC Từ đó suy ra tam giác ACB phải vuông ở C

3 tháng 11 2022

6ytt

20 tháng 12 2021

a: Xét tứ giác AFCH có

E là trung điểm của AC

E là trung điểm của HF

Do đó: AFCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AFCH là hình chữ nhật