Cho △MNP cân tại P(P<90 độ),vẽ MA ⊥ PN tại A,NC ⊥ PM tại C
a,Chứng minh:PC=PA và CA//MN
b,Gọi I là giao điểm của MA và MC.Tia MI cắt MN tại K.Chứng minh K là trung điểm của MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác MNP cân tại M có góc P = 50 độ. Tính các góc còn lại của tam giác MNP
Giải
Vì \(\Delta MNP\)cân tại \(M\) \(\Rightarrow\widehat{N}=\widehat{P}\)mà \(\widehat{P}=50^o\left(gt\right)\Rightarrow\widehat{N}=50^o\)
Ta có \(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Leftrightarrow\widehat{M}+50^o+50^o=180^o\)
\(\Leftrightarrow\widehat{M}+100^o=180^o\Rightarrow\widehat{M}=80^o\)
Vậy ............
\(\widehat{MPN}\) \(=180^o-160^o=20^o.\)
Xét tam giác MNP:
\(\widehat{M}+\widehat{MPN}+\widehat{MNP}=\) \(180^o\) (Tổng 3 góc trong tam giác).
\(\Rightarrow140^o+20^o+\)\(\widehat{MNP}=\) \(180^o.\)
\(\Rightarrow\) \(\widehat{MNP}=20^{o}.\)
Xét tam giác MNP: \(\widehat{MPN}=\widehat{MNP} (=20^{o}).\)
\(\Rightarrow\) Tam giác MNP cân tại M.
Vì góc ngoài tại P có số đo là 160 độ nên ta có:
\(\widehat{M}+\widehat{N}=160^0\)
\(\Leftrightarrow\widehat{N}=20^0\)
\(\Leftrightarrow\widehat{P}=20^0\)
hay ΔMNP cân tại M
Vì \(\Delta MNP\) cân tại P \(\Rightarrow\widehat{M}=\widehat{N}\)
Xét \(\Delta MNP\) ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Rightarrow\widehat{N}+\widehat{N}+3\widehat{N}=180^o\\ \Rightarrow5\widehat{N}=180^o\\ \Rightarrow\widehat{N}=36^o\)
\(\Rightarrow\widehat{M}=\widehat{N}=36^o\)
\(\widehat{P}=3\widehat{N}=3.36^o=108^o\)
Ta có: tam giác MNP cân tại P có một góc M ⏜ = 60 o
Suy ra tam giác MNP đều (dấu hiệu nhận biết tam giác đều)
Chọn đáp án C
góc P = 30 độ
góc M = 60 độ
ta áp dụng đl tổng 3 góc trog 1 tam giác
=> góc N = 90 độ
Vậy MNP là tam giác vuông cân .
a, Vì tam giác MNP cân ở M nên
theo t/chất tam giác cân ta có : góc MNP=MPN
b, Đây cũng là t/c của tam giác cân nhưng nếu bạn cần thì có thể làm như sau :
Xét tam giác MNI và MPI có :
MN=MP (GT)
NI=IP (GT)
góc MNI=MPI (cmt)
=> Hai tam giác bằng nhau ( t/hợp : c.g.c )
=> MIN=MIP mà MIN+MIP=180 => MIP= 180:2=90độ hay MI vuông góc với NP ( đpcm )
- Hình tự vẽ nha
a, - Xét \(\Delta PCN\) và \(\Delta PAM\) có :
\(\left\{{}\begin{matrix}\widehat{MPN}\left(chung\right)\\PN=PM\left(gt\right)\\\widehat{PAM}=\widehat{PCN}\left(=90^o\right)\end{matrix}\right.\)
=> \(\Delta PCN\) = \(\Delta PAM\) ( Ch - gn )
=> PC = PA ( cạnh tương ứng )
- Xét tam giác PAC có : PC = PA ( cmt )
=> Tam giác PAC cân tại P .
=> \(\widehat{PAC}=\frac{180^o-\widehat{MPN}}{2}\)
Mà tam giác PMN cân tại P .
=> \(\widehat{PMN}=\frac{180^o-\widehat{MPN}}{2}\)
=> \(\widehat{PAC}=\widehat{PMN}\)
Mà 2 góc trên ở vị trí đồng vị .
=> CA // MN .