Giải phương trình :
a ) \(\frac{3x+2}{2}\)- \(\frac{3x+1}{6}\)= \(\frac{5}{3}\)+ 2x
b ) \(\frac{4x+3}{5}\)- \(\frac{6x-2}{7}\)= \(\frac{5x+4}{3}\)+ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
\(\frac{5x-3}{6}-\frac{7x-1}{4}-\frac{4x+2}{7}+5=0\)
<=> \(\frac{14\left(5x-3\right)-21\left(7x-1\right)-12\left(4x+2\right)+420}{84}=0\)
<=> 70x - 42 - 147x + 21 - 48x -24 + 420 = 0
<=> -125x + 375 = 0
<=> -125x = -375
<=> x = 3
Vậy S = {3}
\(\frac{3\left(2x+1\right)}{4}-5-\frac{3x+2}{10}=\frac{2\left(3x-1\right)}{5}\)
<=> \(\frac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\frac{8\left(3x-1\right)}{20}\)
<=> 30x + 15 - 100 - 6x - 4 = 24x - 8
<=> 24x - 24x = -8 + 89
<=> 0x = 81
=> pt vô nghiệm
1) (2x - 3)2 = 4x2 - 8
<=> 4x2 - 12x + 9 = 4x2 - 8
<=> 12x + 9 = -8
<=> 12x = -17
<=> x = 17/12
1) (2x - 3)^2 = 4x^2 - 8
<=> 4x^2 - 12x + 9 = 4x^2 - 8
<=> 4x^2 - 12x + 9 - 4x^2 = -8
<=> -12x + 9 = -8
<=> -12x = -8 - 9
<=> -12x = -17
<=> x = 17/12
2) x - (x + 2)(x - 3) = 4 - x^2
<=> x - x^2 + 3x - 2x + 6 = 4 - x^2
<=> 2x - x^2 + 6 = 4 - x^2
<=> 2x - x^2 + 6 + x^2 = 4
<=> 2x + 6 = 4
<=> 2x = 4 + 6
<=> 2x = 10
<=> x = 5
3) 3x - (x - 3)(x + 1) = 6x - x^2
<=> 3x - x^2 - x + 3x + 3 = 6x - x^2
<=> 5x - x^2 + 3 = 6x - x^2
<=> 5x - x^2 + 3 + x^2 = 6x
<=> 5x + 3 = 6x
<=> 3 = 6x - 5x
<=> 3 = x
4) 3x/4 = 6
<=> 3x = 6.4
<=> 3x = 24
<=> x = 8
5) 7 + 5x/3 = x - 2
<=> 21 + 5x = 3x - 6
<=> 5x = 3x - 6 - 21
<=> 5x = 3x - 27
<=> 5x - 3x = -27
<=> 2x = -27
<=> x = -27/2
6) x + 4 = 2/5x - 3
<=> 5x + 20 = 2x - 15
<=> 5x + 20 - 2x = -15
<=> 3x + 20 = -15
<=> 3x = -15 - 20
<=> 3x = -35
<=> x = -35/3
7) 1 + x/9 = 4/3
<=> x/9 = 4/3 - 1
<=> x/9 = 1/3
<=> x = 3