Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng
(a+b-c)4 + (b+c-a)4 +(c+a-b)4 > a4+b4+c4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
Áp dụng BĐT Cauchy ta có:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)
Tương tự ta cũng có:
\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)
\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)
\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)
Cộng theo vế các BĐT trên, ta được:
\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)
Dấu "=" xảy ra.....
Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\)
BĐT\(\Leftrightarrow x^4+y^4+z^4>\left(\frac{x+y}{2}\right)^4+\left(\frac{y+z}{2}\right)^4+\left(\frac{z+x}{2}\right)^4\)
\(\Leftrightarrow16\left(x^4+y^4+z^4\right)>x^4+4x^3y+6x^2y^2+4xy^3+y^4+y^4+4y^3z+6y^2z^2+4yz^3+z^4+z^4+z^3x+z^2x^2+zx^3+x^4\)
\(\Leftrightarrow14\left(x^4+y^4+z^4\right)-4\left(x^3y+xy^3+y^3z+yz^3+z^3x+zx^3\right)-6\left(x^2y^2+y^2z^2+z^2x^2\right)>0\)