cho a,b,c>0 thỏa mãn ab+bc+ca=3.cmr:
\(P=\frac{a^2b+b^2c+c^2a}{3}+\sqrt[3]{9\left(a+b+c\right)}\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(xy+yz+zx\right)^2}{3\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{3}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\) hay \(a=b=c=\frac{1}{\sqrt{2}}\)
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)
\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)
Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)
Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)
\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)
\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)
sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Do abc khác 0 nên ta chia cả 2 vế của bđt cho abc. Ta được:
\(\sqrt{\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(a+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
\(\Leftrightarrow\sqrt{3+\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}+\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}}\ge1+\sqrt[3]{\left(1+\frac{bc}{a^2}\right)\left(1+\frac{ca}{b^2}\right)\left(1+\frac{ab}{c^2}\right)}\)
ĐẶT: \(x=\frac{bc}{a^2};y=\frac{ca}{b^2};z=\frac{ab}{c^2}\Rightarrow xyz=1\)
KHI ĐÓ TA CẦN CHỨNG MINH:
\(\sqrt{3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge1+\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Leftrightarrow\sqrt{3+x+y+z+xy+yz+zx}\ge1+\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ĐẶT : \(t=\sqrt[3]{2+x+y+z+xy+yz+zx}\)
ÁP DỤNG BĐT AM-GM TA CÓ:
\(x+y+z+xy+yz+zx\ge6\sqrt[6]{xyz.xy.yz.zx}=6\) (DO xyz=1)
\(\Rightarrow t\ge\sqrt[3]{2+6}=2\)
VẬY BẤT ĐẲNG THỨC ĐÃ CHO TƯƠNG ĐƯƠNG VỚI:
\(\sqrt{t^3+1}\ge1+t\Leftrightarrow t^3+1\ge t^2+2t+1\Leftrightarrow t^3-t^2-2t\ge0\Leftrightarrow t\left(t+1\right)\left(t-2\right)\ge0\)
ĐÚNG VỚI : \(t\ge2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c
\(\Rightarrow DPCM\)
Hôm qua em không có online. Bài này căng não@@
Đặt \(p=a+b+c;q=ab+bc+ca;r=abc\Rightarrow q=3\) thì \(p^2\ge3q=9\Rightarrow p\ge3\)
Chú ý: \(-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2=(a-b)^2 (b-c)^2 (c-a)^2 \geq 0\)
\(\Rightarrow\) \(1/27(-2p^3-2\sqrt{(p^2-3q)^3}+9pq) \leq r \leq 1/27(-2p^3+2\sqrt{(p^2-3q)^3}+9pq)\)
Hay là: \(\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-9\right)^3}+27p\right)\le r\le\frac{1}{27}\left(-2p^3+2\sqrt{\left(p^2-9\right)^3}+27p\right)\)
Nếu \(a\ge b\ge c\Rightarrow a^2b+b^2c+c^2a\ge ab^2+bc^2+ca^2\)
\(\Rightarrow a^2b+b^2c+c^2a\ge\frac{1}{2}\Sigma ab\left(a+b\right)=\frac{1}{2}\left(pq-3r\right)=\frac{3}{2}\left(p-3r\right)\)
Do đó: \(P\ge\frac{1}{2}\left(p-3r\right)+\sqrt[3]{9p}\ge\frac{1}{2}\left(p-\frac{1}{27}\left(-2p^3+2\sqrt{\left(p^2-9\right)^3}+27p\right)\right)+3\)
\(\ge\frac{1}{27}p^3-\frac{1}{27}\sqrt{\left(p^2-9\right)^3}+3=f\left(p\right)\). Dễ thấy khi p tăng thì f(p) tăng.
Do đó f(p) đạt giá trị nhỏ nhất khi p đạt giá trị nhỏ nhất. Hay là: \(f\left(p\right)\ge f\left(3\right)=4=VP\)
Trường hợp còn lại tối về em đăng, đang bận!
Nếu \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\le0\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)=-\left|\left(a-b\right)\left(b-c\right)\left(a-c\right)\right|=-\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=-\sqrt{-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2}\)
---------------------------------------------------------------------------------------------------------
Chú ý: \(-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2=(a-b)^2 (b-c)^2 (c-a)^2 \geq 0\)
\(\Rightarrow\) \(1/27(-2p^3-2\sqrt{(p^2-3q)^3}+9pq) \leq r \leq 1/27(-2p^3+2\sqrt{(p^2-3q)^3}+9pq)\)
Hay là: \(\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-9\right)^3}+27p\right)\le r\le\frac{1}{27}\left(-2p^3+2\sqrt{\left(p^2-9\right)^3}+27p\right)\)
Ta có: \(2\left(a^2b+b^2c+c^2a\right)=\Sigma ab\left(a+b\right)+\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(=pq-3r-\sqrt{-4p^3r + p^2q^2 + 18pqr - 4q^3 - 27r^2}\)
\(=3p-3r-\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}\)
Do đó: \(a^2b+b^2c+c^2a\)\(=\frac{3p-3r-\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}}{2}\)
Do đó: \(P\)\(=\frac{3p-3r-\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}}{6}\)\(+\sqrt[3]{9p}\ge4\)
\(\Leftrightarrow\frac{3p-3r}{6}+\sqrt[3]{9p}\ge4+\)\(\frac{\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}}{6}\)
Or \(3p-3r+6\sqrt[3]{9p}-24\ge\)\(\sqrt{-4p^3r + 9p^2 + 54pr - 108 - 27r^2}\)
Vì: \(VT=3p-3r+6\sqrt[3]{9p}-24\ge3p-\frac{pq}{3}+18-24=0\)
Nên bất đẳng thức trên tương đương:
\(\left(3p-3r+6\sqrt[3]{9p}-24\right)^2\ge\) \(-4p^3r + 9p^2 + 54pr - 108 - 27r^2\)
Em chịu thua :( @Akai Haruma @Nguyễn Việt Lâm giúp em với ạ.