K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

2 tháng 1 2018

Chọn đáp án C.

10 tháng 9 2021

làm r mà bạn ei

10 tháng 9 2021

Chưa mà bạn

22 tháng 8 2023

\(\dfrac{2x+y}{x-y}=\dfrac{1}{2}\) (ĐKXĐ: \(x\ne y;y\ne0\))

\(\Leftrightarrow4x+2y=x-y\)

\(\Leftrightarrow4x-x=-y-2y\)

\(\Leftrightarrow3x=-3y\)

\(\Leftrightarrow\dfrac{x}{y}=-\dfrac{3}{3}=-1\) hay \(P=-1\)

AH
Akai Haruma
Giáo viên
11 tháng 2

Lời giải;

Vế 1:

Áp dụng BĐT AM-GM:

$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$

$x^3+\frac{x}{2}\geq \sqrt{2}x^2$

$y^3+\frac{y}{2}\geq \sqrt{2}y^2$

$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$

$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$

-----------------------

Vế 2:

$x^2+y^2=1$

$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$

$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow x^3\leq x^2; y^3\leq y^2$

$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$