Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = 2 AB.
Trên tia đối của tia AC lấy điểm E sao cho AE = 2 AC.
a) Chứng minh tam giác ADE đồng dạng tam giác ABC ;
b) Tính tỉ số AD/AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{2AB}{AB}=2\\\dfrac{AE}{AC}=\dfrac{2AC}{AC}=2\end{matrix}\right.\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét tam giác ADE và tam giác ABC ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(cmt\right)\)
Góc DAE = Góc BAC (đối đỉnh)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}=\dfrac{AE}{AC}\)
a) Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔABC=ΔADE(hai cạnh góc vuông)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: ΔACE vuông cân tại A
=>góc ACE=45 độ
c: DE=BC=căn 12^2+16^2=20cm
a)
Sửa đề: ΔABM=ΔADN
Xét ΔAED và ΔACB có
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)
AD=AB(gt)
Do đó: ΔAED=ΔACB(c-g-c)
⇒\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)
hay \(\widehat{ADN}=\widehat{ABM}\)
Xét ΔADN và ΔABM có
DN=BM(gt)
\(\widehat{ADN}=\widehat{ABM}\)(cmt)
AD=AB(gt)
Do đó: ΔADN=ΔABM(c-g-c)
b) Ta có: ΔADN=ΔABM(cmt)
nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)
mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)
nên \(\widehat{DAN}+\widehat{DAM}=180^0\)
\(\Leftrightarrow\widehat{NAM}=180^0\)
hay M,A,N thẳng hàng(đpcm)
1: Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó; BCDE là hình bình hành
Suy ra: BC//DE
2: AH\(\perp\)BC
mà BC//DE
nên \(AH\perp\)DE
mà AK\(\perp\)DE
và AH,AK có điểm chung là A
nên H,A,K thẳng hàng
ta lay Ab chia cho 2000 jsfuigasfugsuiegSUIBBUIHRDUIPOHGSDUFGHUSUHIUSIUGSRG
thanks