căn bậc 2 của 16 là gì
toán 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
căn bậc 2 (√) của một số thực "a" là một số 'x' sao cho x2 = a, hoặc nói cách khác số x mà bình phương lên (kết quả của phép nhân với chính nó, hay x × x) là a.
Căn bậc 3 của số a là số x sao cho x^3 = a
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}\left(x\ge0\right)\)
\(=3\sqrt{2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}\)
\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}\)
\(=\left(3-10+21\right)\sqrt{2x}\)
\(=14\sqrt{2x}\)
Căn bậc hai số học của: 16; 7; 10; 36 lần lượt là: \(4;\,\sqrt 7 ;\,\sqrt {10} ;\,6\)
- Ta có: \(A=\frac{\sqrt{x+1}}{\sqrt{x-1}}\)
- Thay \(x=\frac{16}{9}\)vào đa thức \(A,\)ta có:
\(A=\frac{\sqrt{\frac{16}{9}+1}}{\sqrt{\frac{16}{9}-1}}\)
\(\Leftrightarrow A=\frac{\sqrt{\frac{25}{9}}}{\sqrt{\frac{7}{9}}}\)
\(\Leftrightarrow A=\frac{5\sqrt{7}}{7}\)
Vậy \(A=\frac{5\sqrt{7}}{7}\)
Thay x = 16/9 vào biểu thức, ta có:
\(\frac{\sqrt{\frac{16}{9}+1}}{\sqrt{\frac{16}{9}-1}}=\frac{\sqrt{\frac{25}{9}}}{\sqrt{\frac{7}{9}}}=\frac{\frac{5}{3}}{\frac{\sqrt{7}}{3}}=\frac{5\sqrt{7}}{5}\)
a: \(\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{9}{4}=\dfrac{36}{16}< \dfrac{81}{16}\)
b: \(\sqrt{16+25}=\sqrt{41}< 9=\sqrt{16}+\sqrt{25}\)
MỌI NGƯỜI CÓ THỂ GIÚP TÔI GIẢI BÀI TOÁN NÀY ĐƯỢC KHÔNG Ạ ĐỂ TỐI ĐẾN LẠI MƠ TIẾP NÓI KẾT QUẢ CHO NGƯỜI ĐÓ MÀ HÌNH NHƯ CÓ GÌ SAI SAI NHỈ ???
Vì ∞∞∞∞ rơi vào dạng không xác định, ta áp dụng quy tắc L'Hospital's. Quy tắc L'Hospital khẳng định rằng giới hạn của một thương các hàm số bằng giới hạn của thương các đạo hàm của chúng.
limn→∞n√n=limn→∞ddn[n]ddn[√n]
Căn bậc 2 của 16 là 4 và -4
4 và -4 nha
chúc bạn hok tốt