giải bpt sau
1-3x<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)
a) \(x^2-4x+3>0\)
\(\Leftrightarrow x^2-x-3x+3>0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)>0\)
Lập bảng xét dấu :
x x-3 x-1 (x-3)(x-1) 1 3 - 0 - + 0 - + + + - +
Dựa vào bảng xét dấu ta có : \(x< 1\) hoặc \(x>3\)
b) \(x^2-2x+3x-6< 0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)< 0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\)
Lập bảng xét dấu :
x x+3 x-2 (x+3)(x-2) -3 2 0 0 - - + - + + + - +
Dựa vào bảng xét dấu ta có : \(-3< x< 2\)
\[\left| {2x - 3} \right| > x + 1\\ \Leftrightarrow \left| {2x - 3} \right| - x > 1\\ T{H_1}:2x - 3 \ge 0 \Rightarrow x \ge {3 \over 2}\\ 2x - 3 - x > 1\\ \Leftrightarrow x - 3 > 1\\ \Leftrightarrow x > 4\left( {TM} \right)\\ T{H_2}:2x - 3 < 0 \Rightarrow x < {3 \over 2}\\ - \left( {2x - 3} \right) - x > 1\\ \Leftrightarrow - 2x + 3 - x > 1\\ \Leftrightarrow - 3x > - 2\\ \Leftrightarrow x < {2 \over 3}\left( {TM} \right)\]
1-3x<0
<=> -3x<-1
<=> x> -1/-3
<=> x> 1/3
1-3x<0
<=> -3x<-1
<=> x<\(\frac{-1}{-3}\)
<=> x<\(\frac{1}{3}\)