Chứng tỏ rằng : Không có giá trị nào của x thỏa mãn |x - 7 | + | x - 10 | = 2
~Mong nhận đc sự giúp đỡ từ các bạn! ~Cảm ơn!~ ^-^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a,b\)
\(\Rightarrow\)\(\left|x-7\right|+\left|x-10\right|=\left|x-7\right|+\left|10-x\right|\ge\left|x-7+10-x\right|=3\forall x\)
Vậy \(\left|x-7\right|+\left|x-10\right|\)không thể bằng 2
1) Muốn sửa xong đoạn đường đó trong 1 ngày thì cần số người là : 25 * 9 = 225 ( người )
Muốn sửa xong đoạn đường đó trong 3 ngày thì cần số người là : 225 / 3 = 75 ( người )
Đáp số : 75 người
2) Tìm 4 giá trị x thỏa mãn điều kiện sau 1,5 < x < 1,5
\(\rightarrow\)Không có giá trị x thỏa mãn điều kiện : 1,5 < x < 1,5
Hazz suy nghĩ nãy h ko được cách nào -_- làm tạm đi
* Nếu x và y chẵn :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+2m-1000\right|.\left(2n-2m-1017\right)\)
\(A=2\left|n+m-1000\right|.\left(2n-2m-1017\right)⋮2\)
Vậy A là số chẵn
* Nếu x chẵn và y lẻ :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+2m+1-1000\right|.\left(2n-2m-1-1017\right)\)
\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\)
Lại có :
\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ \(\left(1\right)\) ( chẵn trừ lẻ = lẻ )
\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1018\) chẵn \(\left(2\right)\) ( chẵn trừ chẵn = chẵn )
Từ (1) và (2) suy ra \(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1018\right]\) chẵn ( lẻ nhân chẵn = chẵn )
Vậy A là số chẵn
* Nếu x lẻ và y chẵn :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+1+2m-1000\right|.\left(2n+1-2m-1017\right)\)
\(A=\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\)
Lại có :
\(2\left(n+m\right)\) chẵn \(\Rightarrow\)\(\left|2\left(n+m\right)-999\right|\) lẻ ( chẵn trừ lẻ = lẻ ) \(\left(3\right)\)
\(2\left(n-m\right)\) chẵn \(\Rightarrow\)\(2\left(n-m\right)-1016\) chẵn ( chẵn trừ chẵn = chẵn ) \(\left(4\right)\)
Từ (3) và (4) suy ra \(\left|2\left(n+m\right)-999\right|.\left[2\left(n-m\right)-1016\right]\) chẵn ( lẻ nhân chẵn = chẵn )
Vậy A là số chẵn
* Nếu x và y lẻ :
\(\Rightarrow\)\(\hept{\begin{cases}x=2n+1\\y=2m+1\end{cases}}\) \(\left(m,n\inℤ\right)\)
Ta có :
\(A=\left|2n+1+2m+1-1000\right|.\left(2n+1-2m-1-1017\right)\)
\(A=\left|2n+2m-998\right|.\left[2\left(n-m\right)-1017\right]\)
\(A=2\left|n+m-499\right|.\left[2\left(n-m\right)-1017\right]⋮2\)
Vậy A là số chẵn
Từ 4 trường hợp trên ta suy ra A là số chẵn với mọi x, y là số nguyên
Vậy A là số chẵn \(\forall x,y\inℤ\)
Chúc bạn học tốt ~
\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)
Tới đây giải ra các trường hợp thui
Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)
\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)
\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)
- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)
- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)
\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d=1\)
\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau
Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\)
Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)
\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)
\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)
Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))
Vậy \(x⋮3\)
\(x+y=1\Rightarrow x=1-y\)
\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+\left(1-y\right)y\)
\(=y^2-y+1\)\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
=>minC=\(\dfrac{3}{4}\) \(\Leftrightarrow y=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{2}\)
Ta có :
\(x+y=1\Rightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+2xy+y^2=1\)
\(\Leftrightarrow x^2+xy+y^2=1-xy\ge1-\left(\dfrac{x+y}{2}\right)^2=1-\dfrac{1}{4}=\dfrac{3}{4}\)
Hay \(C \ge \dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
\(\left|x-7\right|+\left|x-10\right|=2\)
Ta có : \(\left|x-7\right|+\left|x-10\right|=\left|x-7\right|+\left|10-x\right|\ge\left|x-7+10-x\right|=3\)
\(\Rightarrow\left|x-7\right|+\left|x-10\right|\ge3\)
\(\Rightarrow\left|x-7\right|+\left|x-10\right|\ne2\)
Vậy không có giá trị x thỏa mãn
+)Nếu \(x< 7\)
\(\Rightarrow7-x+10-x=2\)
\(\Rightarrow17-2x=2\)
\(\Rightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
\(\Rightarrow x=7,5\) ( loại )
+) Nếu \(7\le x\le10\)
\(\Rightarrow x-7+10-x=2\)
\(\Rightarrow3=2\)
\(\Rightarrow\) Vô lí
\(\Rightarrow\)loại
+ )Nếu \(x>10\)
\(\Rightarrow x-7+x-10=2\)
\(\Rightarrow2x-17=2\)
\(\Rightarrow2x=19\)
\(\Rightarrow x=\frac{19}{2}\)
\(\Rightarrow x=9,5\) ( loại )
Vậy không có giá trị nào của x thỏa mãn ycbt