giup minh voi😭😭😭
(x+1)^2+(y+1)^2+(x-y)^2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1:Cho 3 duong thang x' y y' . Ba duong thang cung di qua diem O
Hay liet ke cac cap goc doi dinh boi cac duong thang da cho
Bai 2 : cho 2 duong thang x x' va
Bai 1:Cho 3 duong thang x' y y' . Ba duong th
Bai 1:Cho 3 duong thang x' y y' . Ba duong thang cung di qua diem O
Hay liet ke cac cap goc doi dinh boi cac duong thang da cho
Bai 2 : cho 2 duong thang x x' va y y' cat nhau tai O biet goc yOx - yOz= 30. Tinh so do moi goc co tren hinh ve.
cho 3 tia xx, , yy, , zz, c nhau tai o neeu xac cap goc bang nhau
câu 1:
2x=3y =>\(\dfrac{x}{3}=\dfrac{y}{2}\) (1)
5y=7z =>\(\dfrac{y}{7}=\dfrac{z}{5}\) (2)
Từ (1) và (2) suy ra
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)=\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Dựa vào tính chất dãy tỉ số bằng nhau
Suy ra \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)=\(\dfrac{3x+5z-7y}{63+50-98}=\dfrac{30}{15}=2\)
\(\dfrac{x}{21}=2\) =>x=2.21=42
\(\dfrac{y}{14}=2\) =>y=2.14=28
\(\dfrac{z}{10}=2\) =>z=2.10=20
Vậy x=42;y=28 và z=20
Câu 2:
\(\dfrac{x^2}{5}=\dfrac{y^2}{4}\)
Dựa vào tính chất dãy tỉ số bằng nhau
Suy ra \(\dfrac{x^2-y^2}{5-4}\) =\(\dfrac{1}{1}=1\)
\(\dfrac{x^2}{5}=1\) =>x2=1.5=5 =>x=\(\sqrt{5}\) hay -\(\sqrt{5}\)
\(\dfrac{y^2}{4}=1\) => y2=1 => y=1 hay -1
2 câu dễ làm trước, 2 câu còn lại tối đi học về mới làm được..(giờ bận rồi)
a) ĐẶt \(x^2+3x+1=a\)
\(A=a\left(a-4\right)-5=a^2-4a-5=\left(a-5\right)\left(a+1\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)
c)\(C=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt ẩn phụ: \(t=x^2+8x+7\) rồi làm tiếp đi..
Để anh làm nốt vậy.
\(B=\left(x^2+2x\right)^2-2x^2-4x-3\)
\(B=\left(x^2+2x\right)^2-2\left(x^2+2x\right)+1-4\)
\(B=\left(x^2+2x-1\right)^2-2^2\)
\(B=\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
\(B=\left(x+3\right)\left(x-1\right)\left(x+1\right)^2\)
___
\(D=x^2-2xy+y^2-7x+7y+12\)
\(D=\left(x-y\right)^2-7\left(x-y\right)+12\)
\(D=\left(x-y\right)^2-3\left(x-y\right)-4\left(x-y\right)+12\)
\(D=\left(x-y\right)\left(x-y-3\right)-4\left(x-y-3\right)\)
\(D=\left(x-y-3\right)\left(x-y-4\right)\)
a: \(\Leftrightarrow\left(4x+12\right)\left(3x-2\right)-\left(3x+3\right)\left(4x-1\right)=-27\)
\(\Leftrightarrow12x^2-8x+36x-24-\left(12x^2-3x+12x-3\right)=-27\)
\(\Leftrightarrow12x^2+28x-24-12x^2-9x+3=-27\)
\(\Leftrightarrow19x-21=-27\)
=>19x=-6
hay x=-6/19
b: \(\left(x+1\right)\left(3x^2-x+1\right)+x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x+3x^2-x+1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Leftrightarrow6x^2+1=\dfrac{5}{2}\)
\(\Leftrightarrow6x^2=\dfrac{3}{2}\)
\(\Leftrightarrow x^2=\dfrac{3}{12}=\dfrac{1}{4}\)
=>x=1/2 hoặc x=-1/2
c: \(\Leftrightarrow2\left(x^2-4\right)-4\left(x^2-x-2\right)+\left(5x+8\right)\left(x+2\right)=0\)
\(\Leftrightarrow2x^2-8-4x^2+4x+8+5x^2+10x+8x+16=0\)
\(\Leftrightarrow3x^2+22x+16=0\)
\(\text{Δ}=22^2-4\cdot3\cdot16=292>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-22-2\sqrt{73}}{6}=\dfrac{-11-\sqrt{73}}{3}\\x_2=\dfrac{-11+\sqrt{73}}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow20x^2-16x-1=10x^2-2x+5x-1\)
\(\Leftrightarrow10x^2-19x=0\)
=>x(10x-19)=0
=>x=0 hoặc x=19/10
\(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{2x+1}{-\left(2x+1\right)}-\dfrac{2x-1}{-\left(2x-1\right)}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{2x}{5x-5}\)
\(\left(2.x+\frac{1}{3}\right)^2=\frac{16}{25}\)
\(\Leftrightarrow2.x+\frac{1}{3}=\pm\sqrt{\frac{16}{25}}\)
\(\Leftrightarrow2.x+\frac{1}{3}=\pm\frac{4}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}2.x+\frac{1}{3}=\frac{4}{5}\\2.x+\frac{1}{3}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2.x=\frac{7}{15}\\2.x=-\frac{17}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{30}\\x=-\frac{17}{30}\end{cases}}\)
\(\left(2.x+\frac{1}{3}\right)^2=\frac{16}{25}\)
\(\left(2.x+\frac{1}{3}\right)^2=\left(\frac{4}{5}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2.x+\frac{1}{3}=\frac{4}{5}\\2.x+\frac{1}{3}=\frac{-4}{5}\end{cases}\Rightarrow\orbr{\begin{cases}2.x=\frac{4}{5}-\frac{1}{3}\\2.x=\frac{-4}{5}-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2.x=\frac{12}{15}-\frac{5}{15}\\2.x=\frac{-12}{15}-\frac{5}{15}\end{cases}\Rightarrow}\orbr{\begin{cases}2.x=\frac{7}{15}\\2.x=\frac{-17}{15}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{15}:2\\x=\frac{-17}{15}:2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{15}.\frac{1}{2}\\x=\frac{-17}{15}.\frac{1}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{30}\\x=\frac{-17}{30}\end{cases}}}\)
Vậy \(x=\frac{7}{30}\)hoặc \(x=\frac{-17}{30}\)