cho pt: (m-2)X^2+2(m-4)X+m-4=0 (1)
giải sử pt có 2 nghiệm x1,x2. hãy tìm 1 hệ thức liên hệ độc lấp x1,x2 với m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4
với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)
với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt
với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất
với \(m< -\frac{1}{3}\)pt vô nghiệm,
theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có
\(x_1+x_2-4x_1x_2=-2\)
ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)
\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)
kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)
a. Em tự giải
b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)
c.
\(x_1^3+x_2^3=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)
\(\Leftrightarrow m=\dfrac{71}{9}\)
Lời giải:
Theo hệ thức Viet, nếu $x_1,x_2$ là 2 nghiệm của pt $x^2-2xm-m^2-1=0$ thì:
$x_1+x_2=2m$
$x_1x_2=-m^2-1$
\(\Rightarrow \left\{\begin{matrix} (x_1+x_2)^2=4m^2\\ 4x_1x_2=-4m^2-4\end{matrix}\right.\)
$\Rightarrow (x_1+x_2)^2+4x_1x_2=-4$
$\Leftrightarrow x_1^2+x_2^2+6x_1x_2=-4$
Đây chính là biểu thức liên hệ giữa $x_1,x_2$ độc lập với $m$.
a, Khi m = 0 thì :
pt <=> x^2+2x-3 = 0
<=> (x-1).(x+3) = 0
<=> x-1=0 hoặc x+3=0
<=> x=1 hoặc x=-3
Tk mk nha
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-4\right)}{m-2}\\x_1x_2=\frac{m-4}{m-2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-4\right)}{m-2}\\2x_1x_2=\frac{2\left(m-4\right)}{m-2}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2+2x_1x_2=0\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m