2x + 2x+1 + 2x+2 + ... + 2x+2015 = 22019 - 8
Đề: Tìm x
Ai nhanh mk tích và kb nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0
=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0
=> 2015 . 2x + (1 + 2 + ... + 2015) = 0
=> 4030x + (2015 + 1).2015 : 2 = 0
=> 4030x + 2031120 = 0
=> 4030x = -2031120
=> x = -504
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
x=3 nha
k cho mk nha
x=3 nha
k mk nha