Chứng minh phân thức : \(M=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\) có giá trị khong phụ thuộc vào x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)
\(=\frac{x^2\left(1+a+a^2\right)+\left(1+a+a^2\right)}{x^2\left(1-a+a^2\right)+\left(1-a+a^2\right)}\)
\(=\frac{\left(1+a+a^2\right)\left(1+x^2\right)}{\left(1-a+a^2\right)\left(1+x^2\right)}=\frac{1+a+a^2}{1-a+a^2}\) không phụ thuộc vào x
Ta có: \(A=\)\(\frac{x^2+a+ax^2+a^2+x^2a^2+1}{x^2-a-ax^2+a^2+a^2x^2+1}\)\(=\frac{x^2\left(a^2+a+1\right)+a^2+a+1}{x^2\left(a^2-a+1\right)+a^2-a+1}\)
\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
Từ đó suy ra đpcm
a/ \(P=\frac{\left(x^2+a\right)\left(1+a\right)a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
b/ Từ phân số rút gọn thì ta thấy P không phụ thuộc vào x và có nghĩa với mọi x.
Ta lại có \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy P không phụ thuộc vào x và có nghĩa với mọi x và a
A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)
= x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x
= x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x
= (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)
= -6x + 16
=> có phụ thuộc vào biến x
B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)
= 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)
= 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7
=> không phụ thuộc vào biến x
\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)
\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)
\(=-6x+16\)
Vậy biểu thức A phụ thuộc vào biến x
\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3-8-8x^3+1\)
\(-7\)
Vậy biểu thức B không phụ thuộc vào biến x
\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+ax^2+a+a^2+a^2x^2+1}{x^2-ax^2-a+a^2+a^2x^2+1}\)
\(=\frac{x^2+1+a\left(x^2+1\right)+a^2\left(x^2+1\right)}{x^2+1-a\left(x^2+1\right)+a^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
M =\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\) = \(\frac{x^2+a+ax^2+a^2+a^2x^2+1}{x^2+a^2-a-ax^2+a^2x^2+1}\)=\(\frac{x^2\left(a^2+a+1\right)+\left(a^2+a+1\right)}{x^2\left(a^2-a+1\right)+\left(a^2-a+1\right)}\)
=\(\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a-1\right)}\). Mà x2>= 0 => x2+1 >0
M= \(\frac{a^2+a+1}{a^2-a+1}\)
Vậy M không phụ thuốc vào giá trị của x
Ta có :
\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)
\(=\frac{\left(x^2+1\right)+\left(x^2a+a\right)+\left(a^2+a^2x\right)}{\left(x^2+1\right)-\left(x^2a+a\right)+\left(a^2+a^2x^2\right)}\)
\(=\frac{\left(x^2+1\right)+a\left(x^2+1\right)+a^2\left(x^2+1\right)}{\left(x^2+1\right)-a\left(x^2+1\right)+a^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)