K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

A = 350.(252007 + 152006 + ... + 152 + 15 + 1) + 25

Đặt B = 152007 + 152006 + ... + 152 + 15

15B = 152008 + 152007 + ... + 153 + 152

15B - B = 152008 - 15

=> B = (152008 - 15)/4

=> A = 350.(152008 - 15/4 + 1) + 25

gọn thế này đủ chưa ?

14 tháng 12 2015

Làm thì lm cho trót đi!! Nghĩ không ra phần b, mà tran thuy trang yêu cầu cao quá à!!

14 tháng 12 2015

a)\(A-25=350.\left(15^{2007}+15^{2006}+...+15+1\right)\)

\(\frac{A-25}{350}=15^{2007}+15^{2006}+...+15+1\)

\(\frac{\left(A-25\right).15}{350}=15^{2008}+15^{2007}+...+15^2+15\)

\(\Rightarrow\frac{15.\left(A-25\right)}{350}-\frac{A-25}{350}=15^{2008}-1\)

\(\frac{15A-25.15-A+25}{350}=\frac{14A-25.14}{350}=15^{2008}-1\)

\(\frac{14\left(A-25\right)}{350}=15^{2008}-1\)

\(A-25=\frac{350\left(15^{2008}-1\right)}{14}=25.\left(15^{2008}-1\right)\)

\(\Rightarrow A=25.15^{2008}\)

b)15 chia hết cho 5 suy ra 152008 chia hết cho 52008

suy ra 25.152008 chia hết cho 25.52008=52010

14 tháng 12 2015

a)\(A=25.15^{2008}\)

b)A=25.152008 chia hết cho 25.52008=52010 ,suy ra điều phải chứng minh

22 tháng 12 2016

đặt B= 15^2007+15^2006+...+15^2+15+1

  15B=15^2008+15^2007+...+15^3+15^2+15

  15B-B=15^2008-1

  14B=15^2008-1 

   B=(15^2008-1)/14

  thế vào A=350.(15^2008-1)/14+25

   A=25(15^2008-1)+25

  A=25(15^2008-1+1)

   A=25.15^2008 

  A=5^2.5^2008.3^2008

   A=5^2010.3^2008 chia hết cho 5^2010

5 tháng 3 2017

ta có : 

4(a+5b) chia hết cho 7

4a + 20b chia hết cho 7

14a+21b chai hết cho 7 ( vì 14 và 21 đều chia hết cho 7)

áp dụng tính chất : 

a chia hết cho 7

b chia hết cho 7

=> a-b chia hết cho 7

(14a+21b)-(10a+20b) chai hết cho 7

10a+b chia hết cho 7

vậy 10a+b chia hết cho 7

22 tháng 12 2015

\(\frac{2}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}=\frac{2}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)

\(=\frac{2\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x-1\right)\left(x+1\right)}-\frac{2.2.\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

=\(=\frac{2x-2+4x^2-2x-4\left(x^2-1\right)}{2x\left(x-1\right)\left(x+1\right)}=\frac{2x-2+4x^2-2x-4x^2+4}{2x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x\left(x-1\right)\left(x+1\right)}\)

b,ta có

\(\frac{1}{P}=x\left(x-1\right)\left(x+1\right)\)

Vì x(x-1)(x+1) là 3 số liên tiếp

=>x(x-1)(x+1) chia hết cho 3

hay 1/p chia hết cho 3

12 tháng 11 2019

2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

Ta có: \(a^3-25a\)

\(=a^3-a-24a\)

\(=a\left(a^2-1\right)-24a\)

\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)-24a\)

Vì a-1; a và a+1 là ba số nguyên liên tiếp nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(1)

Ta có: a-1 và a là hai số nguyên liên tiếp

nên \(\left(a-1\right)\cdot a⋮2\)

\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)(2)

mà (2;3)=1(3)

nên từ (1), (2) và (3) suy ra \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)

mà \(24a⋮6\)

nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)-24a⋮6\)

hay \(a^3-25a⋮6\)(đpcm)