Giúp mình với, sắp nộp bài r.
Cho ∆ABC đồng dạng ∆DEF , biết AB = 5cm, DE = 9cm.
a. Viết tên các cặp góc bằng nhau
b. Tìm tỉ số đồng dạng
c. Tính P và P’. Với P và P’ lần lượt là chu vi của ∆ABC và ∆DEF, biết P’ + P = 28.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vì ABC và DEF là 2tam giác đồng dạng
A=D ,B=E ,C=F
Tỉ số đồng dạng các cah 5/9
Tỉ số đồng dạg diện tích là25/81
c,Vì tỉ số chủ vi 2 tâm giác đồng dạng =tỉ số đồng dạng các cạnh
Chu vi ABC=5/9 chủ vi tam giác DEF
Mà chu vi ABC+chủ vi DEF=28
Chu vi tam giác ABC=28/(5+9)*5=10
Chu vi tam giácDEF=28-10=18
Bạn tham khảo tại đường link này nhé
https://hoidap247.com/cau-hoi/454188
Cho ∆ABC đồng dạng với ∆DEF , biết AB = 5cm, DE = 9cm. a. Viết tên các cặp góc bằng nhau b. Tìm tỉ số đồng dạng c. Tính P và P’. Với P và P’ lần lượt là ch
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
1/
Ta có: \(\frac{12}{16}=\frac{9}{12}=\frac{15}{20}=\frac{3}{4}\Leftrightarrow\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\)
suy ra Tam giác ABC đồng dạng với tam giác DEF
Nên \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{DEF}\\\widehat{ACB}=\widehat{DFE}\\\widehat{BAC}=\widehat{EDF}\end{matrix}\right.\) (2 góc tương ứng)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{3}=\dfrac{AC}{5}=\dfrac{BC}{7}=\dfrac{AB+BC+CA}{3+5+7}=\dfrac{20}{15}=\dfrac{4}{3}\)
Do đó: AB=4(cm); AC=20/3(cm); BC=28/3(cm)
ta có:\(\dfrac{DE}{AB}=\dfrac{DF}{AC}=\dfrac{EF}{BC}\)
\(\Leftrightarrow\dfrac{3}{AB}=\dfrac{5}{AC}=\dfrac{7}{BC}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3+5+7}{AB+AC+BC}=\dfrac{15}{20}=\dfrac{3}{4}\)
<=>\(\dfrac{AB+AC+BC}{DE+EF+DF}=\dfrac{4}{3}\)
<=>AB=\(\dfrac{4}{3}.DE=\dfrac{4}{3}.3=4\)
AC=\(\dfrac{4}{3}.DF=\dfrac{4}{3}.5=\dfrac{20}{3}\)
BC=\(\dfrac{4}{3}.EF=\dfrac{4}{3}.7=\dfrac{28}{3}\)
VẬY...