K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

a,Vì ABC và DEF là 2tam giác đồng dạng

A=D ,B=E ,C=F

Tỉ số đồng dạng các cah 5/9

Tỉ số đồng dạg diện tích là25/81

c,Vì tỉ số chủ vi 2 tâm giác đồng dạng =tỉ số đồng dạng các cạnh

Chu vi ABC=5/9 chủ vi tam giác DEF

Mà chu vi ABC+chủ vi DEF=28

Chu vi tam giác ABC=28/(5+9)*5=10

Chu vi tam giácDEF=28-10=18

3 tháng 4 2020

Bạn tham khảo tại đường link này nhé

https://hoidap247.com/cau-hoi/454188

Cho ∆ABC đồng dạng với ∆DEF , biết AB = 5cm, DE = 9cm. a. Viết tên các cặp góc bằng nhau b. Tìm tỉ số đồng dạng c. Tính P và P’. Với P và P’ lần lượt là ch

8 tháng 4 2020

bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE

bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
         NM=1/2BC => NP/BC=1/2 (2)
         MP=1/2AC => MP/AC=1/2 (3)

từ (1),(2),(3) => MNP đồng dạng với ABC 
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78
8 tháng 4 2020

1/ A B C D E F

Ta có: \(\frac{12}{16}=\frac{9}{12}=\frac{15}{20}=\frac{3}{4}\Leftrightarrow\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}\)

suy ra Tam giác ABC đồng dạng với tam giác DEF

Nên \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{DEF}\\\widehat{ACB}=\widehat{DFE}\\\widehat{BAC}=\widehat{EDF}\end{matrix}\right.\) (2 góc tương ứng)

8 tháng 4 2020
https://i.imgur.com/6DaUOlj.jpg

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{3}=\dfrac{AC}{5}=\dfrac{BC}{7}=\dfrac{AB+BC+CA}{3+5+7}=\dfrac{20}{15}=\dfrac{4}{3}\)

Do đó: AB=4(cm); AC=20/3(cm); BC=28/3(cm)

26 tháng 1 2022

D E F A B C

ta có:\(\dfrac{DE}{AB}=\dfrac{DF}{AC}=\dfrac{EF}{BC}\)

\(\Leftrightarrow\dfrac{3}{AB}=\dfrac{5}{AC}=\dfrac{7}{BC}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3+5+7}{AB+AC+BC}=\dfrac{15}{20}=\dfrac{3}{4}\)

<=>\(\dfrac{AB+AC+BC}{DE+EF+DF}=\dfrac{4}{3}\)

<=>AB=\(\dfrac{4}{3}.DE=\dfrac{4}{3}.3=4\)

AC=\(\dfrac{4}{3}.DF=\dfrac{4}{3}.5=\dfrac{20}{3}\)

BC=\(\dfrac{4}{3}.EF=\dfrac{4}{3}.7=\dfrac{28}{3}\)

VẬY...