Tìm GTLN của \(B=\frac{x^2}{x^4+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet Max cua tu la 4 vi x2 >=0 => 4-x2<=4
xet Min cua mau la 1 vi x2>=0 => x2+1>=1
vay GTLN cua B= Max tu / Min mau= 4/1=4
dau = xay ra khi x=0
\(B=\frac{4-x^2}{x^2+1}=\frac{-\left(x^2+1\right)+5}{x^2+1}=-1+\frac{5}{x^2+1}=-1+\frac{5}{x^2+1}\)
\(B_{max}\Leftrightarrow\frac{5}{x^2+1}_{max}\Leftrightarrow\left(x^2+1\right)_{min}\Leftrightarrow x=0\)
Vậy ...
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(B=\frac{x^2}{x^4+1}\)
\(\Rightarrow\frac{1}{B}=\frac{x^4+1}{x^2}\)
\(=x^2+\frac{1}{x^2}\)
Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(\frac{1}{B}=x^2+\frac{1}{x^2}\ge2\sqrt{x^2\cdot\frac{1}{x^2}}=2\)
\(\Rightarrow B\le\frac{1}{2}\)
Dấu "=" xảy ra tại \(x^2=\frac{1}{x^2}\Leftrightarrow x^4=1\Leftrightarrow x=1;x=-1\)
Vậy \(B_{max}=\frac{1}{2}\Leftrightarrow x=1;x=-1\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(B=\frac{x^2}{x^4+1}\)
\(\Rightarrow\frac{1}{B}=\frac{x^4+1}{x^2}=x^2+\frac{1}{x^2}\ge2\sqrt{x^2\cdot\frac{1}{x^2}}=2\)
\(\Rightarrow B\le\frac{1}{2}\)
Dấu "=" xảy ra tại x=1
Vậy \(B_{max}=\frac{1}{2}\Leftrightarrow x=1\)
Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(B=\frac{x^2}{x^4+1}\le\frac{x^2}{2x^2}=\frac{1}{2}\)
Vậy \(B_{max}=\frac{1}{2}\Leftrightarrow x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow\left(x-1\right)^2\left(x+1\right)^2=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)