Tìm cặp số nguyên x,y biết:
\(x^2-y^2=-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
=> x(y-2) + y-2 = 1
=> (x+1)(y-2) = 1
Do x, y ∈ Z => x+1, y-2 ∈ Z
Lập bảng
x+1 | 1 | -1 |
y-2 | 1 | -1 |
x | 0 | -2 |
y | 3 | 1 |
(thử lại t/m)
Vậy (x,y) = (0,3); (-2,1)
(x - 2)(y + 3) = 15
<=> xy + 3x - 2y - 6 = 15
<=> xy + 3x - 2y = 21
<=> \(\left\{{}\begin{matrix}x=\dfrac{21+2y-3x}{y}\\y=\dfrac{21+2y-3x}{x}\end{matrix}\right.\)
Do x, y nguyên
nên : x-2 và y-3 cũng đạt giá trị nguyên
Ta có : 5 = 1.5 = (-1).(-5)
Bảng giá trị :
x-2 | 1 | 5 | -1 | -5 |
y-3 | 5 | 1 | -5 | -1 |
x | 3 | 7 | 1 | -3 |
y | 8 | 4 | -2 | 2 |
Vậy (x;y)=(3;8);(7;4);(1;-2);(-3;2)
Bài toán đc coi là sự kết hợp của lớp 7; lớp 6 và lớp 4.
Ghi chú: x2 - y2 = x2 + xy - yx - y2 = x(x + y) - y(x + y) = (x - y)(x + y)
x2 - y2 = -3
(x - y)(x + y) = -3 = 1.(-3) = -3.1
(x - y)(x + y) = 1.(-3) = -3.1
Với x - y = 1 và x + y = -3 (làm giống lớp 4, Tổng - Hiệu)
=> x > y vì x - y = 1
=> x = (-3 + 1) : 2 = -1
=> y = -1 - 1 = -2
Với x - y = -3 và x + y = 1
=> x < y vì x - y = -3
=> x = (-3 + 1) : 2 = -1
=> y = 1 - (-1) = 2
Vậy cặp số nguyên x, y là: x = -1 và y = -2 hoặc x = -1 và y = 2
Bn có thể làm phương trình thay vì làm tổng hiệu, nên nhớ: làm phương trình sẽ chắc chắn hơn là làm tổng hiệu, nhưng mình thích thì mình làm, miễn sao đúng được rồi.