K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{a^2-ab-ab+b^2}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\) với mọi \(a;b\inℕ^∗\) 

Ta có\(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\text{ với mọi a;b \inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\text{ với mọi a;b\inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\text{ với mọi a;b \inℕ^∗}\)

Học tốt

Ta có:Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)(Vì\(a,b\inℕ^∗\))

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)(Đấu "=" xảy ra khi và chỉ khi a=b)(đpcm)

30 tháng 3 2020

giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.

\(\Rightarrow\)a = m  + b [ m \(\ge\)0]

ta có :

\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)

\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)

29 tháng 10 2015

\(a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab\)

Vì  \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2+2ab\ge2ab\left(dpcm\right)\)

10 tháng 12 2017

giả sử a \(\ge\)\(\Rightarrow\)a = b + m ( m \(\ge\)0 )

do đó : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)( a,b thuộc N* )

Dấu " = " xảy ra khi a = b 

6 tháng 5 2018

Ta chứng minh: \(\frac{a}{2b}\)\(\frac{b}{2a}\)- 1 \(\ge\)\(\Leftrightarrow\) \(\frac{1}{2}\)(\(\frac{a}{b}\)\(\frac{b}{a}\)) -  1 \(\ge\)

\(\Leftrightarrow\)  (\(\frac{a}{b}\)\(\frac{b}{a}\)) -  2 \(\ge\)0   \(\Leftrightarrow\) (\(\frac{a}{b}\)+\(\frac{b}{a}\)) - 2 \(\sqrt{\frac{a}{b}\frac{b}{a}}\) \(\ge\) 0

\(\Leftrightarrow\) (\(\sqrt{\frac{a}{b}}\)-\(\sqrt{\frac{b}{a}}\))2 \(\ge\)0 , luôn đúng với mọi a, b thuộc N(đpcm).

\(\Leftrightarrow\)

8 tháng 5 2018

\(\frac{a}{2b}+\frac{b}{2a}\ge1\)

\(\frac{2a^2}{4ba}+\frac{2b^2}{4ab}\ge1\)

\(2a^2+2b^2\ge1\)( do số bình phương luôn luôn lớn hơn 0)

25 tháng 8 2021

Điều cần chứng minh:
|a|+|b|≥|a+b||a|+|b|≥|a+b|

|a+b|=|a+b||a+b|=|a+b|
Khi này ,a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0

|a|>=0. và   |b|>=0

Nên chúng chỉ có nhận giá trị lớn hơn or bằng 0

⇒|a|+|b|≥|a+b|→đpcm

25 tháng 8 2021

\(\left\{{}\begin{matrix}\left|a\right|>=0\\\left|b\right|>=0\end{matrix}\right.\)