K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADFE có 

AE//DF

AE=DF

Do đó: ADFE là hình bình hành

mà AE=AD

nên ADFE là hình thoi

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình vuông

b: Ta có: ADFE là hình vuông

nên \(\widehat{EFD}=90^0\) và AF vuông góc với DE tại trung điểm của mỗi đường

Xét tứ giác BEFC có 

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

mà BC=BE

nên BEFC là hình thoi

mà \(\widehat{EBC}=90^0\)

nên BEFC là hình vuông

=>EC vuông góc với BF tại trung điểm của mỗi đường

Xét ΔEDC có

EF là đường trung tuyến

EF=DC/2

Do đó: ΔEDC vuông tại E

Xét ΔEDC có 

EF là đường cao

EF là đường trung tuyến

DO đó: ΔEDC cân tại E

=>ED=EC

=>EM=EN

Xét tứ giác EMFN có \(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)

nên EMFN là hình chữ nhật

mà EM=EN

nên EMFN là hình vuông

18 tháng 12 2016

A B B D C M N

31 tháng 12 2018

a) E, F là trung điểm AB, CD ⇒ AE = EB = AB/2, DF = FC = CD/2.

Lại có AB = CD = 2.AD = BC.

⇒ AE = EB = BC = CF = FD = DA.

+ Tứ giác ADFE có AE // DF, AE = DF

⇒ ADFE là hình bình hành.

Hình bình hành ADFE có Â = 90º

⇒ ADFE là hình chữ nhật.

Hình chữ nhật ADFE là hình chữ nhật có AE= AD

⇒ ADFE là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành

Do đó DE // BF

Tương tự: AF // EC

Suy ra EMFN là hình bình hành

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có M̂ = 90º nên là hình chữ nhật.

Lại có ME = MF nên EMFN là hình vuông.

12 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác AEFD là hình thoi

⇒ AF ⊥ ED ⇒  ∠ (EMF) = 90 0

AF // CE (vì tứ giác AECF là hình bình hành)

Suy ra: CE ⊥ ED ⇒  ∠ (MEN) =  90 0

Xét tứ giác EBFD, ta có: EB = FD (vì cùng bằng AE)

EB // FD (vì AB // CD)

Tứ giác EBFD là hình bình hành (vì có một cặp cạnh đổi song song và bằng nhau) ⇒ DE // BF

Suy ra: BF ⊥ AF ⇒ ∠ (MFN) = 90 0

Vậy tứ giác EMFN là hình chữ nhật.

29 tháng 5 2019

Giải bài 85 trang 109 Toán 8 Tập 1 | Giải bài tập Toán 8

a) E, F là trung điểm AB, CD ⇒ AE = EB = AB/2, DF = FC = CD/2.

Ta có: AB = CD = 2AD = 2BC

⇒ AE = EB = BC = CF = FD = DA.

+ Tứ giác ADFE có AE // DF, AE = DF

⇒ ADFE là hình bình hành.

Hình bình hành ADFE có Â = 90º

⇒ ADFE là hình chữ nhật.

Hình chữ nhật ADFE là hình chữ nhật có AE= AD

⇒ ADFE là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành

Do đó DE // BF

Tương tự: AF // EC

Suy ra EMFN là hình bình hành

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có M̂ = 90º nên là hình chữ nhật.

Lại có ME = MF nên EMFN là hình vuông.

15 tháng 11 2016

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông

15 tháng 11 2016

chị mình giỏi thiệtyeu

16 tháng 11 2021

a: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

a: xét tứ giác ADFE có 

AE//DF

AE=DF

Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

mà AE=AD

nên ADFE là hình vuông

c: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF và DE=BF(1)

hay ME//NF

Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

=>EC và BF cắt nhau tại trung điểm của mỗi đường

=>N là trung điểm của BF

=>FN=BF/2(2)

Ta có: AEFD là hình vuông

=>AF và DE vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau

=>M là trung điểm của DE

=>EM=DE/2(3)

Từ (1), (2) và (3) suy ra EM=FN

Xét tứ giác EMFN có 

EM//FN

EM=FN

Do đó: EMFN là hình bình hành

mà \(\widehat{EMF}=90^0\)

nên EMFN là hình chữ nhật