K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2020

Ta có: \(3x^2-6x+4=3\left(x-1\right)^2+1>0;\forall x\) nên BPT tương đương:

\(\left(m-4\right)x^2+\left(m+1\right)x+2m-1>0\)

a/ Để tập nghiệm của BPT là R:

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=\left(m+1\right)^2-4\left(m-1\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m>5\\m< \frac{3}{7}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>5\)

b/ Với \(m=4\) BPT có nghiệm (ktm)

Với \(m\ne4\) để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\Delta'=-7m^2+38m-15\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m\ge5\\m\le\frac{3}{7}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=4\\m\le\frac{3}{7}\end{matrix}\right.\)

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

27 tháng 1 2021

a, \(\left(x+m\right)m+x>3x+4\)

\(\Leftrightarrow mx+m^2+x>3x+4\)

\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)

Nếu \(m=0,\) bất phương trình vô nghiệm

Nếu \(m>0\)

\(\left(1\right)\Leftrightarrow x>-m-2\)

\(\Rightarrow x\in\left(-m-2;+\infty\right)\)

\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán

Nếu \(m< 0\)

\(\left(1\right)\Leftrightarrow x< -m-2\)

\(\Rightarrow\) Không thỏa mãn

Vậy \(m>0\)

27 tháng 1 2021

b, \(m\left(x-m\right)\ge x-1\)

\(\Leftrightarrow mx-m^2\ge x-1\)

\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)

Nếu \(m=1,\) bất phương trình thỏa mãn

Nếu \(m>1\)

\(\left(1\right)\Leftrightarrow x\ge m+1\)

\(\Rightarrow m>1\) không thỏa mãn yêu cầu

Nếu \(m< 1\)

\(\left(1\right)\Leftrightarrow x\le m+1\)

\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán

Vậy \(m< 1\)

NV
29 tháng 7 2021

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)

Để bất phương trình có tập nghiệm là R thì \(\left(m-2\right)^2-4\left(m+1\right)< 0\)

\(\Rightarrow m^2-4m+4-4m-4< 0\)

=>m(m-8)<0

=>0<m<8

16 tháng 3 2022

Để bất phương trình đã cho có tập nghiệm là R thì

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\) (với a là hệ số của x2 và bằng 1, thỏa)

\(\Rightarrow\) (m-2)2-4.(m+1)\(\le\)\(\Leftrightarrow\) m2-8m\(\le\)\(\Leftrightarrow\) 0\(\le\)m\(\le\)8.

b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4=2m-1\\x^2-3x-4=-2m+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4-2m+1=0\\x^2-3x-4+2m-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2m+3=0\\x^2-3x+2m-5=0\end{matrix}\right.\)

Để phương trình có bốn nghiệm phân biệt thì \(\left\{{}\begin{matrix}9-4\left(-2m+3\right)>0\\9-4\left(2m-5\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9+8m-12>0\\9-8m+20>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8m>3\\8m< 29\end{matrix}\right.\Leftrightarrow\dfrac{3}{8}< m< \dfrac{29}{8}\)