K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

a.A=3|1-2x|-5

    Vì \(3\left|1-2x\right|\ge0\) với \(\forall x\)

\(\Rightarrow A\ge-5\)  với\(\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow1-2x=0\)

                         \(\Leftrightarrow x=\frac{1}{2}\)

Vậy Min A=-5 khi x=\(\frac{1}{2}\)

b,Vì\(\left(2x^2+1\right)^4\ge0\)với \(\forall x\)

\(\Rightarrow B\ge-3\)với mọi x

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy Min B=-3 khi x=-1/2

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Lời giải:

a) 

Áp dụng BĐT Bunhiacopxky:

\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)

\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)

Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$

b) 

Áp dụng BĐT Bunhiacopxky:

\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)

\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)

Vậy $B_{min}=-7; B_{\max}=3$

16 tháng 12 2017

vì | 1 - 2x | \(\ge\)\(\Rightarrow\)3 . | 1 - 2x | \(\ge\)0

\(\Rightarrow\)A = 3 . | 1 - 2x | - 5 \(\ge\)-5

GTNN của A là -5 khi | 1 - 2x | = 0 hay x = 1/2

16 tháng 12 2017

vì | 1 - 2x | \(\ge\)\(\Rightarrow\)3 . | 1 - 2x | \(\ge\)0

\(\Rightarrow\)A = 3 . | 1 - 2x | - 5 \(\ge\)-5

GTNN của A là -5 khi | 1 - 2x | = 0 hay x = 1/2

16 tháng 12 2017

Ta có:

A=|1-2x|-5

Mà |1-2x| luôn lớn hơn hoặc bằng 0(Dấu bằng xảy ra khi x=1/2)

=> GTNN của A=0-5=-5

Vậy min A=-5 khi x=1/2

16 tháng 12 2017

Ta có :

| 1 - 2x | \(\ge\)\(\forall\)x

\(\Rightarrow\)A = | 1 - 2x | - 5 \(\le\)-5 \(\forall\)x

dấu " = " xảy ra khi | 1 - 2x | = 0 hay x = \(\frac{1}{2}\)

\(\Rightarrow\)GTLN của A là -5 khi x = \(\frac{1}{2}\)

Lưu ý : cái này phải tìm GTLN

1 tháng 12 2021

\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)

\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm 

\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)

Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)

\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)

\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm

\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)

Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)

1 tháng 7 2021

a, Ta có: \(sinx\in\left[-1;1\right]\Rightarrow max=15\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

b, \(y=1-3\sqrt{1-cos^2x}=1-3\sqrt{sin^2x}=1-3\left|sinx\right|\ge1\)

\(max=1\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)

20 tháng 3 2023

A = 5x² + 6

Do x² ≥ 0 

⇒ 5x² ≥ 0

⇒ 5x² + 6 ≥ 6

Vậy giá trị nhỏ nhất của A là 6 khi x = 0

--------------------

B = 4(2x - 4)² + 2023

Do (2x - 4)² ≥ 0

⇒ 4(2x - 4)² ≥ 0

⇒ 4(2x - 4)² + 2023 ≥ 2023

Vậy giá trị nhỏ nhất của B là 2023 khi x = 2

23 tháng 3 2023

cqảm ơn

 

15 tháng 1 2021

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

15 tháng 8 2021

a, \(y=sin^2x-2sinx+3cos^2x\)

\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)

\(=3-2sinx-2sin^2x\)

Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)

\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)

15 tháng 8 2021

b, \(y=sinx-cosx+sin2x+5\)

\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)