cho tam giac ABC can tai A co canh day bang 14 cm, ke Ad la tia phan giac cua goc BAC( D thuoc BC). tinh do dai canh AB biet AD= 15cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\)cân tại \(A\left(gt\right):\)
\(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACD,:\)
\(\widehat{BAD}=\widehat{CAD}\left(AD:tpg\widehat{BAC}\right)\)
\(AB=AC\left(cmt\right)\)
\(AD\)chung
\(\Leftrightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
\(+,\Rightarrow BD=CD\)( 2 cạnh t/ứ)
\(\Rightarrow D\)là trung điểm của \(BC\)
\(\Rightarrow BD=CD=\frac{BC}{2}=\frac{14}{2}=7\left(cm\right)\)
\(+,\Rightarrow\widehat{BDA}=\widehat{CDA}\)( 2 góc t/ứ)
Mà \(\widehat{BDA}+\widehat{CDA}=180^0\)
\(\Rightarrow2\widehat{BDA}=180^0\Leftrightarrow\widehat{BDA}=90^0\)
\(\Rightarrow\Delta ABD\perp\)tại \(D\)
\(\Rightarrow AD^2+BD^2=AB^2\left(Py-ta-go\right)\)
\(\Rightarrow15^2+7^2=AB^2\)
\(\Rightarrow AB^2=225+49\)
\(\Rightarrow AB^2=274\)
\(\Rightarrow AB=\sqrt{274}cm\)
chúc bạn học tốt
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
AB=\(\sqrt{274}\)