K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

+) Xét \(x=0\) 

\(\Rightarrow\left(3y+1\right)\left(y+1\right)=21\)

\(\Rightarrow3y+1;y+1\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Mà \(3y+1\) chia \(3\) dư \(1;-2\)

\(\Rightarrow3y+1\in\left\{1;-2;7\right\}\)

\(\Rightarrow y\in\left\{0;-1;2\right\}\)

+) Với \(y=0\)

\(\Rightarrow y+1=1\) ( loại )

+) Với \(y=-1\)

\(\Rightarrow y+1=0\) ( loại )

+) Với \(y=2\)

\(\Rightarrow y+1=3\) ( thỏa mãn )

+)  Xét \(x\ne0\) 

\(\Rightarrow2^{\left|x\right|}+x\left(x+1\right)\) chẵn 

\(\Rightarrow y\) lẻ 

\(\Rightarrow2x+3y+1\) chẵn 

Mà \(21\) lẻ

 \(\Rightarrow x\ne0\) phương trình vô nghiệm 

Vậy \(\left(x;y\right)=\left(0;2\right)\) 

15 tháng 4 2020

1) x,y nguyên => x-3; 2y+1 nguyên

=> x-3; 2y+1 \(\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

ta có bảng

x-3-13-1113
x-102416
2y+1-1-13131
y-1-760

2) làm tương tự

3) xy-x-y=0

<=> x(y-1)-(y-1)=0+1

<=> (y-1)(x-1)=1

x,y nguyên => y-1; x-1 nguyên

=> y-1; x-1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)

TH1: \(\hept{\begin{cases}y-1=-1\\x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=0\end{cases}}}\)

TH2: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)

4) xy+3x-7y=21

<=> x(y+3)-7(y+3)=0

<=> (y+3)(x-7)=0

\(\Leftrightarrow\orbr{\begin{cases}y+3=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\x=7\end{cases}}}\)

15 tháng 4 2020

1) Do: (x-3)(2y+1)=13 nên 13 chia hết cho (x-3)

=> (x-3);(2y+1) thuộc ước của 13

Ta có bảng gt sau:

x-3                1                    -1                        13                       -13

2y+1             13                  -13                       1                         -1

x                    4                    2                         16                       -10

y                    6                    -7                         0                        -1

NX              chọn             chọn                     chọn                    chọn

Vậy...

Câu 2) tương tự, bn tự làm nha.

3) xy-x-y=0

=>(xy-x)-(y-1)=1

=>x(y-1)-1(y-1)=1

=>(x-1)(y-1)=1

4)xy+3x-7y=21

=>x(y+3)-7(y+3)=0

=>(x-7)(y+3)=0

3,4 bạn làm tiếp nha mình lười gõ 

=>x(y-2)+3y-6=15

=>(y-2)(x+3)=15

=>\(\left(x+3;y-2\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;17\right);\left(12;3\right);\left(-4;-13\right);\left(-18;1\right);\left(0;7\right);\left(2;5\right);\left(-6;-3\right);\left(-8;-1\right)\right\}\)

16 tháng 11 2015

a)x=+-4,+-7;+-2,+-14
b)(2x)^2-1=-21=>(2x)^2=-20=>2x=\(\sqrt{-20}\)=>x sẽ ko có giá trị vì ko có căn âm
c)2xy+x-6y-3-7=0
=2xy+x-6y-10=x+2(xy-3y-5)=0=>xy-3y-5=0

12 tháng 2 2016

Câu e: x+xy +y =9;x[y+1]+y=9      ;x[y+1]+[y+1]=10     

[x+1]+[y+1]=10 nên [x+1] và [y+1] thuộc ƯC của 10 sau đó kẻ bảng ra 

31 tháng 1 2022

-Đề thiếu.

3 tháng 2 2018

17 tháng 8 2016

Giải:

1. Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

+) \(\frac{x}{2}=-3\Rightarrow x=-6\)

+) \(\frac{y}{5}=-3\Rightarrow y=-15\)

Vậy x = -6

        y = -15

2. Ta có:

\(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}=\frac{x}{3}=\frac{y}{7}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

+) \(\frac{x}{3}=-4\Rightarrow x=-12\)

+) \(\frac{y}{7}=-4\Rightarrow y=-28\)

Vậy x = -12

        y = -28

17 tháng 8 2016

1/ \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=-\frac{21}{7}=-3\)

\(\frac{x}{2}=-3\Rightarrow x=-6\)

\(\frac{x}{5}=-3\Rightarrow x=-15\)

2/ \(7x=3y\Rightarrow\frac{x}{7}=\frac{y}{3}\)

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)

\(\frac{x}{7}=4\Rightarrow x=28\)

\(\frac{y}{3}=4\Rightarrow y=12\)