Cho Tam giác OPQ có góc O=3×góc P=6×góc Q.Kẻ OH vuông góc PQ tại H.So sánh HP và HQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHPQ vuông tại Q và ΔHPO vuông tại O có
HP chung
\(\widehat{QHP}=\widehat{OHP}\)
Do đó: ΔHPQ=ΔHPO
b: Xét ΔOPE vuông tại O và ΔQPK vuông tại Q có
PQ=PK
\(\widehat{KPQ}=\widehat{EPO}\)
Do đó: ΔOPE=ΔQPK
Suy ra: EO=KQ
Ta có: EO+OH=EH
KQ+QH=KH
mà EO=KQ
và OH=QH
nên EH=KH
a, Ta có AB < AC => ^C < ^B
b, Vì AH là đường cao
=> ^AHB = ^AHC = 900
Lại có ^C < ^B (cmt)
=> ^CAH > ^HAB
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
a: Xét tứ giác AQHP có
AQ//HP
AP//HQ
=>AQHP là hình bình hành
Xet ΔAHQ và ΔHAP có
HA chung
HQ=AP
AQ=HP
=>ΔAHQ=ΔHAP
b: ΔFBC vuông tại F
mà FM là trung tuyến
nên FM=BC/2
ΔECB vuông tại E
mà EM là trung tuyến
nên EM=BC/2=FM
=>ΔMEF cân tại M
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AEF=góc ABC
Theo bài ra ta rút ra đc gócO/6 = gócP/2=gócQ
Theo định lý tổng 3 góc trong tam giác
=> góc Q + 2 góc Q +6 góc Q =180 độ
=> góc Q =20 độ
Khi đó góc P =40 độ ; gócO=120 độ
Ta có: tan OPH = tan40 =OH/HP
tan OQH = tan20 = OH/QH
Chia vế => tan40/ tan20 =QH/HP
=> QH > HP
Nếu sai thì bạn cho nình thêm ý kiến :) nha