Cho tam giác MAQ cân tại M có MA = 15cm; AQ = 18cm
a) Tính độ dài đường cao MI ( I thuộc AQ)
b) Đường cao QN của tam giác MAQ cắt MI tại H. C/m: tam giác QIH đồng dạng tam giác
MIA; tam giác MAI đồng dạng tam giác QAN
c) Tính độ dài đoạn thẳng AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có
BA=CA
góc B=góc C
=>ΔBAM=ΔCAN
b: ΔBAM=ΔCAN
=>AM=AN
góc MAB=90 độ
góc B=30 độ
=>góc AMN=60 độ
=>ΔAMN đều
góc NAB=120-90=30 độ=góc B
=>ΔNAB cân tại N
góc MAC=120-90=30 độ=góc C
=>ΔMAC cân tại M
a) Để chứng minh tam giác MAB đều, ta cần chứng minh MA = MB và góc MAB = 60°.
Vì MA = MD và tam giác MDA là tam giác đều, nên góc MDA = 60°. Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90°. Từ đó, ta có góc MAD = 90° - 60° = 30°.
Do đó, góc MAB = góc MAD + góc BAC = 30° + 90° = 120°.
Vì góc MAB = 120° và góc MAB = 60°, nên tam giác MAB là tam giác đều.
b) Để chứng minh tam giác ACD vuông, ta cần chứng minh góc ADC = 90°.
Vì MA = MD và tam giác MDA là tam giác đều, nên góc MDA = 60°. Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90°. Từ đó, ta có góc MAD = 90° - 60° = 30°.
Vì CD là trung tuyến trong tam giác ABC, nên góc CAD = góc BAC/2 = 90°/2 = 45°.
Do đó, góc ADC = góc MAD + góc CAD = 30° + 45° = 75°.
Vì góc ADC ≠ 90°, nên tam giác ACD không vuông.
c) Để chứng minh tam giác KGN cân, ta cần chứng minh KG = GN và góc KGN = góc NGK.
Vì DK là đường cao trong tam giác MDC, nên góc KDM = 90°.
Vì tam giác MDA là tam giác đều, nên góc MDA = 60°. Từ đó, ta có góc MDC = 90° - 60° = 30°.
Vì tam giác KDM là tam giác vuông tại K, nên góc KDM = 90°. Vì góc KDM = 30°, nên góc KDG = 90° - 30° = 60°.
Tương tự, ta có góc NGC = 60°.
Vì góc KDG = góc NGC = 60°, nên tam giác KGN là tam giác cân.
a: ΔABC vuông tại A
=>góc B+góc C=90 độ
=>góc B=60 độ
ΔACB vuông tại A có AM là trung tuyến
nên MA=MB=MC=BC/2
Xét ΔMAB có MA=MB và góc B=60 độ
nên ΔMAB đều
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>góc ACD=90 độ
=>ΔACD vuông tại C
c: Xét ΔDCK vuông tại C và ΔBAK vuông tại A có
DC=BA
CK=AK
=>ΔDCK=ΔBAK
=>DK=KB
Xét ΔCAD có
DK,CM là trung tuyến
DK cắt CM tại N
=>N là trọng tâm
=>KN=1/3KD
Xét ΔCAB có
AM,BK là trung tuyến
AM cắt BK tại G
=>G là trọng tâm
=>KG=1/3KB
=>KG=KN
=>ΔKGN cân tại K
A K B D M C N I
a. Xét tgiac MAB va tgiac MDC co :
MD = MA ( gt )
BM = MC ( AM la dg trung tuyen)
^AMB = ^DMC ( 2 góc đối đỉnh)
=> tgiac MAB = tgiac MDC ( c.g.c) (dccm)
b. => AB = DC ( 2 canh tuong ung )
=> ^MBA = ^MCD ( 2 goc tuong ung )
- Ta co : 15^2 = 9^2 + 12^2
=> BC^2 = AB^2 + AC^2
=> tgiac ABC vuong tai A
Do BA vuog goc vs AC => DC vuog goc vs AC ( t/c quan he tu vuog goc den song song )
Ma ^MBA = ^MCD (CMT) => DC song song AB
Xet tgiac CKD va tgiac AKB co ;
AB = DC (CMT)
KC=KA (K la trung diem AC)
^BAK = ^DCK = 90o
=> tgiac CKD = tgiac AKB ( 2 cgv)
=> KD= KB ( 2 cah t.ung)
Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!
C/m:
Từ giả thiết ta có:
\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\) \(\left(.\right)\)
\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)
\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)
Giả sử \(MA\ne MB\)ta xét 2 trường hợp:
T/ hợp 1: \(MA< MB\)
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)
Nối MA.
Để chứng minh MA =MB. Ta dùng phản chứng.
G/s: \(MA\ne MB\)
Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)
Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)
Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)
+) TH1: MA> MB=MC
Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)
Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)
+) TH1: MA< MB=MC
Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)
Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)
=> Điều giả sử là sai
=> MA=MB
a: Xét ΔMAQ và ΔMBQ có
MA=MB
MQ chung
AQ=BQ
Do đó: ΔMAQ=ΔMBQ
a: Xét ΔMNA vuông tại N và ΔMQB vuông tại Q có
MN=MQ
góc NMA=góc QMB
=>ΔMNA=ΔMQB
=>MA=MB
=>ΔMAB cân tại M
c: NC=15^2/8=225/8(cm)
CM=căn 225/8*289/8=255/8(cm)