K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Đáp án C

Trong (SAC) có SO cắt MC tại I

IMCI(MNC)

Mà I ∈ SO

⇒ I là giao điểm của SO và (MNC)

NV
1 tháng 7 2021

a.

Trong mp (SAB), nối MN kéo dài cắt AB tại E

\(\Rightarrow\left\{{}\begin{matrix}E\in\left(MNP\right)\\E\in\left(ABCD\right)\end{matrix}\right.\)

Mặt khác theo giả thiết \(\left\{{}\begin{matrix}P\in\left(ABCD\right)\\P\in\left(MNP\right)\end{matrix}\right.\)

\(\Rightarrow EP=\left(MNP\right)\cap\left(ABCD\right)\)

b.

Theo giả thiết: \(\left\{{}\begin{matrix}M\in\left(MNP\right)\\M\in SA\Rightarrow M\in\left(SAD\right)\end{matrix}\right.\)

Trong mp (ABCD), nối EP kéo dài cắt AD tại F

\(\Rightarrow\left\{{}\begin{matrix}F\in\left(MNP\right)\\F\in\left(SAD\right)\end{matrix}\right.\)

\(\Rightarrow MF=\left(MNP\right)\cap\left(ABCD\right)\)

c.

Trong mp (SBC), nối NP kéo dài cắt SC tại H

\(\Rightarrow\left\{{}\begin{matrix}H\in\left(MNP\right)\\H\in\left(SCD\right)\end{matrix}\right.\)

Gọi giao điểm của EP và CD tại K

\(\Rightarrow HK=\left(MNP\right)\cap\left(SCD\right)\)

25 tháng 3 2018

Đáp án B

Ta có: NI ∩ SD = J

Xét (CMN) và (SAD) có:

M là điểm chung

J là điểm chung

⇒ MJ là giao tuyến của 2 mặt phẳng (CMN) và (SAD)

27 tháng 5 2019

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE

28 tháng 7 2018

Giải bài 3 trang 91 sgk Hình học 11 | Để học tốt Toán 11

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)