Coi phân tử nước có dạng hình cầu, đường kính 5.10-10m và có khối lượng 3.10-26 kg. Hãy tính xem nếu xếp sát nhau số phân tử nước trong 1 lít nước thì ta được chiều dài là bao nhiêu?
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một phân tử nước có khối lượng \(m=3.10^{-26}kg\)
Số phân tử nước trong \(1l\) nước:
\(N=\dfrac{1}{3.10^{-26}}=3.10^{26}\) phân tử
Nếu đem tất cả các phân tử nước trên xếp sát nhau thì được chiều dài:
\(l=5.10^{-10}.3.10^{26}=1,5.10^{17}\)
Một phân tử nước có khối lượng \(m=3\cdot10^{-26}kg\)
Số phân tử nước trong 6kg nước:
\(N=\dfrac{6}{3\cdot10^{-26}}=2\cdot10^{26}\) phân tử.
Có chiều dài:
\(l=5\cdot10^{-10}\cdot2\cdot10^{26}=10^{17}m\)
Một nguyên tử Fr có đường kính bằng 7,0 \(\overset{o}{A}\)
Cần số nguyên tử Fr là: \(\dfrac{7,8\cdot10^4}{7,0}\) ≈ 11143 nguyên tử
a) \(n_{CO_2}=\dfrac{4,4}{44}=0,1\left(mol\right)=>V_{CO_2}=0,1.22,4=2,24\left(l\right)\)
\(n_{O_2}=\dfrac{3,2}{32}=0,1\left(mol\right)=>V_{O_2}=0,1.22,4=2,24\left(l\right)\)
b) \(n_{H_2O}=\dfrac{3.10^{23}}{6.10^{23}}=0,5\left(mol\right)\)
=> mH2O = 0,5.18 = 9(g)
c) \(n_{Mg}=\dfrac{12}{24}=0,5\left(mol\right)\)
=> Số nguyên tử Mg = 0,5.6.1023 = 3.1023
\(n_{Zn}=\dfrac{13}{65}=0,2\left(mol\right)\)
=> Số nguyên tử Zn = 0,2.6.1023 = 1,2.1023
Số nguyên tử Ag = 0,15.6.1023 = 0,9.1023
Số nguyên tử Al = 0,45.6.1023 = 2,7.1023
a) Đổi 2,5m = 25dm, 1,5m = 15dm, 1,2m = 12dm
Thể tích bể nước là : 25.15.12 = 4500 (dm3)
=> Bể nước chứa được 4500 dm3
b) Diện tích kính cần dùng là : (25+15).2.12 + 25.15 = 1335 dm2
a) Đổi 2,5m=25l
1,5m=15l
1,2m=12l
Thể tích bể nước là:
\(25\cdot15\cdot12=4500\left(l\right)\)
Vậy: Bể có thể chứa tối đa 4500 lít nước
- Trong phân tử nước:
+ Nguyên tử H có 2 quả cầu màu xanh => Có 2 electron ở lớp ngoài cùng
+ Nguyên tử O có 8 quả cầu màu xanh => Có 8 electron ở lớp ngoài cùng
Tóm tắt : R = 5.10-10 (m)
m = 3.10-26 kg
Nếu m' = 1 lít = 1 kg thì R' = ?
Bài làm :
Gọi D là khối lượng riêng của phân tử nước
Ta có : \(m=\frac{4}{3}.\pi.R^3.D\)
\(m'=\frac{4}{3}.\pi.R'^3.D\)
\(\rightarrow\frac{m}{m'}=\frac{R^3}{R'^3}\)
hay \(3.10^{-26}=\frac{R^3}{R'^3}\rightarrow R'^3=\frac{3.10^{-26}}{R^3}=\frac{3.10^{-26}}{1,25.10^{-28}}=240\left(m^3\right)\)
\(\rightarrow R'=\sqrt[3]{240}\approx6,2\left(m\right)\)