Cho tam giác ABC cân tại A ( góc A < 90o ) . Kẻ BD vuông góc cới AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . CM : tam giác ACM vuông
Các cậu chỉ cần làm hai phần c và d thôi là mình đã biết ơn lắm rồi vì 2 phần đó mình không biết làm...
Cảm ơn các cậu trước nha!
a, Vì △ABC cân tại A => AB = AC
Xét △ABD vuông tại D và △ACE vuông tại E
Có: BAC là góc chung
AB = AC (cmt)
=> △ABD = △ACE (ch-gn)
c, Ta có: AE + BE = AB và AD + DC = AC
Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE)
=> BE = DC
Xét △HEB vuông tại E và △HDC vuông tại D
Có: BE = DC (cmt)
EBH = DCH (△ABD = △ACE)
=> △HEB = △HDC (cgv-gnk)
=> BH = HC (2 cạnh tương ứng)
=> △BHC cân tại H
c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Xét △BAH và △CAH
Có: AB = AC (cmt)
ABH = ACH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BAH = CAH (2 góc tương ứng)
Xét △ABK và △ACK
Có: AB = AC (cmt)
BAK = CAK (cmt)
AK là cạnh chung
=> △ABK = △ACK (c.g.c)
=> BK = CK (2 cạnh tương ứng)
Xét △BHK và CMK
Có: HK = MK (gt)
HKB = MKC (2 góc đối đỉnh)
BK = CK (cmt)
=> △BHK = △CMK (c.g.c)
=> HBK = MCK (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BH // MC (dhnb)
=> BD // MC (H BD)
Mà BD ⊥ AC (gt)
=> MC ⊥ AC (từ vuông góc song song)
=> ACM = 90o
=> △ACM vuông tại C
1 cách khác cho câu d
d, làm giống đoạn đầu cho đến HBK = MCK (2 góc tương ứng) => DBC = BCM
Xét △BDC vuông tại D có: DBC + DCB = 90o (tổng 2 góc nhọn trong tam giác vuông)
=> BCM + ACB = 90o => ACM = 90o => △ACM vuông tại C