cho tam giác ABC có 3 đường cao là 3 số nguyên bán kính đường tròn nội tiếp =1 cm tam giác ABC đều
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
10 tháng 12 2016
Gọi cạnh tam giác ABC là x
theo công thức tính diện tích S = p.r với p là nửa chu vi, r là bán kính đường tròn nội tiếp.
Ta có \(\frac{x^2\sqrt{3}}{4}=\frac{3x}{2}.1\Rightarrow x=2\sqrt{3}\) (cm)
Suy ra bán kính đường tròn ngoại tiếp : \(R=\frac{AB.BC.AC}{4.S_{ABC}}\frac{x^3}{\frac{4.x^2\sqrt{3}}{4}}=\frac{x}{\sqrt{3}}=2\) (cm)
CM
14 tháng 11 2018
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
Gọi 3 cạnh cua tam giác là a ;b; c
2p =a+b+c
\(S=r.p=p\)
=> \(\frac{a+b+c}{2}=\frac{ah1}{2}=\frac{bh2}{2}=\frac{ch3}{2}=\frac{a}{\frac{2}{h1}}=\frac{b}{\frac{2}{h2}}=\frac{c}{\frac{2}{h3}}=\frac{a+b+c}{2\left(\frac{1}{h1}+\frac{1}{h2}+\frac{1}{h3}\right)}\)
=>\(\frac{1}{h1}+\frac{1}{h2}+\frac{1}{h3}=1\) => h1h2+h2h3+h1h3 = h1h2h3 => h1=h2=h3 ( vì h1;h2;h3 là 3 số nguyên)
=> KL
gọi a,b,c là độ dài 3 cạnh tam giác, x,y,z là độ dài đường cao tương ứng
ta có:2SABC= a+b+c=xa=by=cz
\(a+b+c=\frac{a}{\frac{1}{x}}=\frac{b}{\frac{1}{y}}=\frac{c}{\frac{1}{z}}=\frac{a+b+c}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Có \(ax=a+b+c\ge2a\)(BDT tam giác)
=>\(x\ge3\)(vì x nguyên)
tương tự \(y\ge3;z\ge3\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le1\)
Dấu "=" xảy ra <=> x=y=z=3<=> tam giác ABC đều