tinh : 3/4 + 3/28 + 3/70 + 3/130
biet 1/n-1/n+a = a/n.(n+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 3 / 4+ 3 / 28 +......+ 3 / n . ( n + 3 )
E = 3 / 1 . 4 + 3 / 4 . 7 +...+ 3 / n ( n + 3 )
E = 1 -1/ 4 + 1 / 4 - 1 /7 +......+ 1 / n - 1 / n + 3
E = 1 - 1 / n + 3
E = n + 2 / n + 3
b) D = \(\frac{3}{4}+\frac{3}{8}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
D = \(3\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}+\frac{1}{304}\right)\)
D = \(3\left(\frac{1}{1x4}+\frac{1}{4x7}+\frac{1}{7x10}+\frac{1}{10x13}+\frac{1}{13x16}+\frac{1}{16x19}\right)\)
D = \(\frac{1}{1}-\frac{1}{19}=\frac{18}{19}\)
Chắc vậy
3/4+3/28+....+3/n.(n+3)=3/1.4+3/4.7+....+3/n.(n+3)=1/1-1/4+1/4-1/7+...+1/n-1/n+3=1-1/n+3.
Suy ra E<1
\(E=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Rightarrow E=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+\left(-\frac{1}{10}+\frac{1}{10}\right)+...\left(-\frac{1}{n}+\frac{1}{n}\right)-\frac{1}{n+3}\)
\(E=1-\frac{1}{n+3}<1\) (ĐPCM)
B = \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{13}-\frac{1}{16}\)
= \(1-\frac{1}{16}\)
= \(\frac{15}{16}\)
Đáp án là: 12/ 13