K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

\(\frac{y}{y^2-y+1}=2009\Rightarrow\frac{y^2-y+1}{y}=\frac{1}{2009}\)

\(\Rightarrow y-1+\frac{1}{y}=\frac{1}{2009}\)

\(\Rightarrow y+\frac{1}{y}=\frac{2010}{2009}\)

\(\frac{y^4+y^2+1}{y^2}=y^2+1+\frac{1}{y^2}\)

\(=y^2+2+\frac{1}{y^2}-1\)

\(=\left(y+\frac{1}{y}\right)^2-1\)

Thay vào \(y+\frac{1}{y}=\frac{2010}{2009}\)ta được

\(\left(\frac{2010}{2009}\right)^2-1\)

\(=\frac{2010^2}{2009^2}-\frac{2009^2}{2009^2}=\frac{\left(2010-2009\right)\left(2010+2009\right)}{2009^2}\)

\(=\frac{4019}{2009^2}\)

:33333

27 tháng 3 2020

\(\frac{y}{y^2-y+1}=2009\Rightarrow\frac{y^2-y+1}{y}=\frac{1}{2009}\Rightarrow\frac{y^2+y+1}{y}=\frac{4019}{2019}\)

\(\frac{y^2-y+1}{y}.\frac{y^2+y+1}{y}=\frac{y^4+y^2+1}{y^2}=\frac{4019}{2009^2}\)

26 tháng 12 2019

Xét hiệu :

\(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)-\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)\)

\(=\frac{x^2-y^2}{x+y}+\frac{y^2-z^2}{y+z}+\frac{z^2-x^2}{z+x}\)

\(=\frac{\left(x+y\right)\left(x-y\right)}{x+y}+\frac{\left(y+z\right)\left(y-z\right)}{y+z}+\frac{\left(z+x\right)\left(z-x\right)}{z+x}\)

\(=x-y+y-z+z-x=0\)

Vậy \(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)=\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)\)

hay \(\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)=2009\)

7 tháng 6 2017

Xét BĐT sau với a,b >0 : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}=2\) \(\). Dấu "=" xảy ra khi a=b 

Ta có : \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) 

\(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\) (1) 

Áp dụng BĐT vừa c.m , ta suy ra : 

\(\hept{\begin{cases}x^2+\frac{1}{x^2}\ge2\\y^2+\frac{1}{y^2}\ge2\\z^2+\frac{1}{z^2}\ge2\end{cases}}\)  . Dấu "=" xảy ra khi x=y=z=1 (2) 

Từ (1) và (2) => \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\)\(\ge2+1+2=6\)

Dấu "=" xảy ra khi x=y=z=1

Thay vào B , ta được : 

B = 2+3+1 =6

7 tháng 6 2017

nhầm chỗ dưới kia phải là 2+2+2 = 6 nha ! sorry

28 tháng 8 2015

Đặt \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2009,B=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{z^2}{x+z}\)

\(=>A-B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{z+x}-\frac{y^2}{x+y}-\frac{z^2}{y+z}+\frac{x^2}{z+x}\)

\(=>2009-B=\frac{x^2-y^2}{x+y}+\frac{y^2-z^2}{y-z}+\frac{z^2-x^2}{z-x}\)

\(=>2009-B=\frac{\left(x-y\right).\left(x+y\right)}{x+y}+\frac{\left(y-z\right).\left(y+z\right)}{y+z}+\frac{\left(z-x\right).\left(z+x\right)}{z+x}\)

=>2009-B=x-y+y-x+z-x

=>2009-B=(x-x)+(y-y)+(z-z)

=>2009-B=0+0+0

=>2009-B=0

=>B=2009

Vậy \(\frac{x^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}=2009\)

29 tháng 12 2015

thông minh đấy,mới lớp 7 mà làm được bài lớp 8

 

13 tháng 2 2019

\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)

<=> x+y = 0 hoặc x+z=0 hoặc z+y=0

<=> x = -y hoặc x = -z hoặc z = -y

\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)