cho M =\(\frac{n-1}{3n-6}\). Tìm số tự nhiên n để M là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}
Để \(\frac{n+6}{15}\) là số tự nhiên <=> n + 6 ⋮ 15 => n + 6 = 15k => n = 15k - 6 ( k thuộc N ) (1)
Ta có : \(\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}=3-\frac{5}{n+1}\)
Để \(3-\frac{5}{n+1}\)là số tự nhiên <=> \(\frac{5}{n+1}\)là số tự nhiên
=> n + 1 là ước của 5 => Ư(5) = { - 5; - 1; 1; 5 }
=> n + 1 = { - 5; - 1; 1; 5 }
=> n = { - 6; - 2; 0; 4 }
Mà theo (1) , n phải có dạng 15k - 6 => n = - 6
Mà theo đề bài n là số tự nhiên nên n không tồn tại
Vì 3n+6 chia hết cho 3
mà 3n+6 cũng chia hết cho 1 và chính nó
=>3n+6 là hợp số
Vậy ko có n thỏa mãn đề bài
k mik nha
Ta có : \(\frac{3n+2}{n-3}=\frac{3\left(n-3\right)+11}{n-3}=3+\frac{11}{n-3}\)
Để \(\frac{3n+2}{n-3}\)là số nguyên thì 11 \(⋮\)n - 3 => n - 3 \(\in\)Ư(11) = {1; - 1; 11; -11}
Với : n - 3 = 1 => n = 4
n - 3 = -1 => n = 2
n - 3 = 11 => n = 14
n - 3 = -11 => n = -8
Vậy n = {4; 2; 14; -8} thì \(\frac{3n+2}{n-3}\)là số nguyên