Q=1+(x+1/x^3+1-1/x-x^2-1-2/x+1):x^3-2x^2/x^3-x^2+x
rút gọn Q.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\neq -1; x\neq 0; x\neq 2$
\(Q=1+\left[\frac{x+1}{(x+1)(x^2-x+1)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2(x-2)}{x(x^2-x+1)}\)
\(=1+\left[\frac{1}{x^2-x+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right].\frac{x^2-x+1}{x-2}\)
\(=1+(\frac{2}{x^2-x+1}-\frac{2}{x+1}).\frac{x^2-x+1}{x-2}\\ =1+\frac{2}{x-2}-\frac{2(x^2-x+1)}{(x+1)(x-2)}=\frac{x}{x-2}-\frac{2x^2-2x+2}{(x+1)(x-2)}\)
\(=\frac{x(x+1)-(2x^2-2x+2)}{(x+1)(x-2)}=\frac{-x^2+3x-2}{(x+1)(x-2)}=\frac{(1-x)(x-2)}{(x+1)(x-2)}=\frac{1-x}{1+x}\)
Ta có: \(\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{2}{\sqrt{x}+3}\)
Sửa đề:
\(Q=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x^2-x+1}-\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\dfrac{x+1-x-1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\dfrac{-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x\left(x-2\right)}{x^2-x+1}\)
\(=1+\dfrac{-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\dfrac{-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-2x\right)}=\dfrac{\left(x+1\right)\left(x^2-2x\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-2x\right)}\)
\(=\dfrac{x^3-2x^2+x^2-2x-2x^2+2x-2}{\left(x+1\right)\left(x^2-2x\right)}\)
\(=\dfrac{x^3-3x^2-2}{\left(x+1\right)\left(x^2-2x\right)}\)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
1:
A = \(\dfrac{2}{x^2-1}-\dfrac{1}{x^2+x}+\dfrac{x^2-3}{x^3-x}\)
= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}+\dfrac{x^2-3}{x\left(x^2-1\right)}\)
= \(\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{x^2-3}{x\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{2x-x+1+x^2-3}{x\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{x^2+x-2}{x\left(x-1\right)\left(x+1\right)}\)