Tìm nghiệm của các đa thức
a) 9x2 - 1 b) 8x3 - 2x c) (2x +3 ) . (5-x ) giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
cho B(x) = 0
\(=>2\left(x-1\right)+3\left(2-x\right)=0\)
\(2x-2+6-3x=0\)
\(4-x=0\)
\(x=4\)
cho C(x) = 0
\(=>8x^3-2x=0\)
\(2x^3.4-2x=0\)
\(2x\left(4x^2-1\right)=0\)
\(=>\left[{}\begin{matrix}2x=0\\4x^2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
tk
https://hoc24.vn/hoi-dap/page-4?subject=1#:~:text=tr%C6%B0%E1%BB%9Bc%20(22%3A29)-,cho%20B(x)%20%3D%200,2,-%3D%3E%5B2
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)
b, \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)
Thay \(x=-1\) vào \(B\left(x\right)\)
\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)
\(\Rightarrow x=-1\) không là nghiệm của B(x)
a: \(f\left(-2\right)=5\cdot4-8-8=4\)
b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)
c: Đặt G(x)=0
=>x(x-2)=0
=>x=0 hoặc x=2
`A(x)=0`
`<=>4x(x-1)-3x+3=0`
`<=>4x(x-1)-3(x-1)=0`
`<=>(x-1)(4x-3)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac341\end{array} \right.$
`B(x)=0`
`<=>2/3x^2+x=0`
`<=>x(2/3x+1)=0`
`<=>` $\left[ \begin{array}{l}x=0\\x=-\dfrac32\end{array} \right.$
`C(x)=0`
`<=>2x^2-9x+4=0`
`<=>2x^2-8x-x+4=0`
`<=>2x(x-4)-(x-4)=0`
`<=>(x-4)(2x-1)=0`
`<=>` $\left[ \begin{array}{l}x=4\\x=\dfrac12\end{array} \right.$
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
a) \(9x^2-1\)
Đặt \(9x^2-1=0.\)
\(\Rightarrow9x^2=0+1\)
\(\Rightarrow9x^2=1\)
\(\Rightarrow x^2=1:9\)
\(\Rightarrow x^2=\frac{1}{9}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=\frac{1}{3}\) và \(x=-\frac{1}{3}\) đều là nghiệm của đa thức \(9x^2-1.\)
b) \(8x^3-2x\)
Đặt \(8x^3-2x=0.\)
\(\Rightarrow2x.\left(4x^2-1\right)=0\)
\(\Rightarrow2x.\left[\left(2x\right)^2-1^2\right]=0\)
\(\Rightarrow2x.\left(2x-1\right).\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\2x=1\\2x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=0;x=\frac{1}{2}\) và \(x=-\frac{1}{2}\) đều là nghiệm của đa thức \(8x^3-2x.\)
c) \(\left(2x+3\right).\left(5-x\right)\)
Đặt \(\left(2x+3\right).\left(5-x\right)=0.\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-3\\x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy \(x=-\frac{3}{2}\) và \(x=5\) đều là nghiệm của đa thức \(\left(2x+3\right).\left(5-x\right).\)
Chúc bạn học tốt!