Chứng minh : 1/22 + 1/23 + 1/24 + ...+ 1/2n < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Đặt : \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{n\cdot n}\)
\(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{(n-1)\cdot n};M< 1-\frac{1}{n}< 1\)
Bạn có thể tham khảo nhé
Đặt A=\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\)
2A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}\)
2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}-\)\(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\right)\)
A=\(\frac{1}{2}-\frac{1}{2^n}\)
Vì \(\frac{1}{2}-\frac{1}{2^n}\) < \(\frac{1}{2}\)
Mà \(\frac{1}{2}\) < 1
Nên \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\) < 1
=> đpcm
Đặt A=122 +123 +124 +...+12n
2A=12 +122 +123 +...+12n−1
2A-A=12 +122 +123 +...+12n−1 −(122 +123 +124 +...+12n )
A=12 −12n
Vì 12 −12n < 12
Mà 12 < 1
Nên 122 +123 +124 +...+12n < 1
=> đpcm
(1/2^2)+(1/2^3)+...+(1/2^n)<(1/1.2)+(1/2.3)+(1/3.4)+...+(1/(n+1).n)
=1-1/2+1/2-1/3+1/3-1/4+1/4-....+1/n+1-1/n
=1-1/n<1
suy ra biểu thức trên <1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}< 1\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+...+\frac{1}{2^{n+1}}\)
\(\Rightarrow A-\frac{1}{2}A=\frac{1}{2^2}-\frac{1}{2^{n+1}}=\frac{2^{n+1}-4}{2^{n+3}}\)
\(\Rightarrow A=\frac{2^{n+1}-4}{2^{n+3}.2}=\frac{2^{n+1}-4}{2^{n+4}}< 1\)
\(\RightarrowĐPCM\)