K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

\(\left|x+\frac{18}{7}\right|+\left|y+\frac{2005}{118}\right|+\left|z-2006\right|=0\)

<=> \(\hept{\begin{cases}x+\frac{18}{7}=0\\y+\frac{2005}{118}=0\\z-2006=0\end{cases}}\)

<=>\(\hept{\begin{cases}x=-\frac{18}{7}\\y=-\frac{2005}{118}\\z=2006\end{cases}}\)

Vậy....

27 tháng 1 2017

D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)

do đó D=\(\frac{x+y+z}{2}\)

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

13 tháng 3 2017

AI K MÌNH MÌNH K LẠI 5 TK.

13 tháng 3 2017

bạn nói j mình ko hỉu j hết

27 tháng 6 2018

\(a^2=b+4010\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4010\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+4010\)

\(\Rightarrow2xy+2yz+2xz=4010\Rightarrow xy+yz+xz=2005\)

\(x\sqrt{\frac{\left(2015+y^2\right)\left(2005+z^2\right)}{\left(2005+x^2\right)}}=x\sqrt{\frac{\left(xz+yz+xy+y^2\right)\left(xy+xz+yz+z^2\right)}{\left(xy+yz+x^2+xz\right)}}\)

\(=x\sqrt{\frac{\left(z\left(x+y\right)+y\left(x+y\right)\right)\left(x\left(y+z\right)+z\left(y+z\right)\right)}{\left(y\left(x+z\right)+x\left(x+z\right)\right)}}=x\sqrt{\frac{\left(y+z\right)^2\left(x+y\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)=xy+xz\)

tương tự : \(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=xy+yz;z\sqrt{\frac{\left(2005+x^2\right)\left(2005+y^2\right)}{2015+z^2}}=xz+yz\)

\(\Rightarrow M=xy+xz+xy+yz+xz+yz=2\left(xy+yz+xz\right)=2\cdot2005=4010\)

13 tháng 5 2017

\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)

Vậy \(A=\frac{1}{20}\)

\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)

\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)

Vậy \(B=1004\)

13 tháng 5 2017

DẤU CHẤM LÀ DẤU NHÂN

a, 

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)

b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

26 tháng 8 2017

a. 2006/2005 x 2007/2006 x 2008/2007 x 2009/2008 x 2010/2009'

= 2006 x 2007 x 2008 x 2009 x 2010 / 2005 x 2006 x 2007 x 2008 x 2009

= 2010/2005

= 402/401

26 tháng 8 2017

\(\left(1+\frac{1}{2005}\right)x\left(1+\frac{1}{2006}\right)x\left(1+\frac{1}{2007}\right)x\left(1+\frac{1}{2008}\right)x\left(1+\frac{1}{2009}\right)\)

\(=\frac{2006}{2005}x\frac{2007}{2006}x\frac{2008}{2007}x\frac{2009}{2008}x\frac{2010}{2009}\)

\(=\frac{2010}{2005}\)

\(=\frac{402}{401}\)