K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Đặt \(\frac{x}{y}=\frac{z}{t}=\frac{a}{b}=k\Leftrightarrow\hept{\begin{cases}x=yk\\z=tk\\a=bk\end{cases}}\)

\(\Leftrightarrow A=\frac{yk-3tk+2bk}{y-3t+2b}=\frac{k\left(y-3t+2b\right)}{y-3t+2b}=k\)

28 tháng 12 2018

đặt \(k=\frac{x}{y}=\frac{z}{t}=\frac{a}{b}\Rightarrow x=yk,z=tk,a=bk\)

\(A=\frac{yk-3tk+2bk}{y-3t+2b}=\frac{k.\left(y-3t+2b\right)}{y-3t+2b}=k\)

28 tháng 12 2018

Đặt \(\frac{x}{y}=\frac{z}{t}=\frac{a}{b}=k\)

\(\Rightarrow x=yk;z=tk;a=bk\)

Do đó : \(A=\frac{x-3z+2a}{y-3t+2b}=\frac{yk-3tk+2bk}{y-3t+2b}\)

\(=\frac{k\left(y-3t+2b\right)}{y-3t+2b}=k\)

x/y=z/t=a/b=k

=>x=yk; z=tk; a=bk

\(A=\dfrac{x-3z+2a}{y-3t+2b}=\dfrac{yk-3tk+2bk}{y-3t+2b}=k\)

9 tháng 1 2020

Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)

=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)

=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)

=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)

=> x = y = z = t = 403

Khi đó A = x + 2y - 3z + t

              = x + 2x - 3x + x

             = x = 403

Vậy x = 403 

20 tháng 9 2017

lam on giup minh voi

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1

bài 1 đâu hả bạn 

 

4 tháng 12 2021

Ko biết thì đừng bình luận vô đây.

5 tháng 12 2021

cho dãy tỉ số bằng nhau: 3a+b+2c/2a+c=a+3b+c/2b=a+2b+2c/b+c. tính giá trị biểu thức (a+b)(b+c)(c+a)/abc, với các mẫu số khác 0. Cái này cũng khó, nếu sai thì mong bạn thông cảm!