giải phương trình bậc nhất một ẩn
\(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(ĐKXĐ:x\ne2\)
\(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)
\(\Rightarrow1+3x-6=3-x\)
\(\Leftrightarrow1+3x-6-3+x=0\)
\(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\left(ktm\right)\)
vậy x thuộc tập hợp rỗng
b, \(ĐKXĐ:x\ne\pm1\)
\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x-1=0\Rightarrow x=1\left(ktm\right)\end{cases}}\)
vậy x = 0
c, \(ĐKXĐ:x\ne\pm\frac{1}{2}\)
\(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(2x+1\right)}\)
\(\Leftrightarrow\frac{32x^2}{12\left(1-2x\right)\left(2x+1\right)}=\frac{-8x\left(2x+1\right)}{12\left(1-2x\right)\left(2x+1\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(2x+1\right)}\)
\(\Rightarrow32x^2=-16x^2-8x-3+6x-24x+48x\)
\(\Leftrightarrow48x^2=22x-3\)
\(\Leftrightarrow48x^2-22x+3=0\)
\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)
\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)
Ta gọi : a là \(x^2-x\)
Thay vào phương trình ta có : \(\frac{a}{a+1}\)+ \(\frac{a+2}{a-2}\)= 1
\(\Rightarrow\frac{a^2-2a+a^2+3a+2}{\left(a+1\right)\left(a-2\right)}\)= 1
\(\Rightarrow2a^2+a+2=a^2-a-2\)
\(\Rightarrow a^2+2a+4=0\)XÉT TAM THỨC BẬC HAI \(\Delta=2^2-4.4=-12< 0\)
Vậy phương trình vô nghiệm
Đặt m = 1 / x - 3 và n = 1/y - 4
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2
....Bạn tự giải tiếp nhé
b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
.................
a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)
\(\Rightarrow3x=0\)
\(\Rightarrow luon-dung-voi-moi-x\)
\(ĐKXĐ:x\ne\pm1\)
\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)
\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)
\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)
\(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{x-1}{x+1}-\frac{\left(x-1\right)\left(x+2\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{x-1-\left(x-1\right)\left(x+1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{-\left(x-1\right)\left(x+2-1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> -(x - 1) = \(\frac{x+1}{x-1}\) - x - 2
<=> 1 - x = \(\frac{x+1}{x-1}\) - x - 2
<=> 1 = \(\frac{x+1}{x-1}\) - x - 2
<=> x - 1 = x + 1 - 2(x - 1)
<=> x - 1 = -x + 3
<=> x = 3 - x - 1
<=> x = 2 - x
<=> x + x = 2
<=> 2x = 2
<=> x = 1