\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : \(x=\frac{1}{3}\) là 1 nghiệm của phương trình
\(\sqrt{\frac{42}{5-x}}\) đồng biến với " x tăng thì 5 - c giảm -> \(\sqrt{\frac{42}{5-x}}\) tăng
Tương đương \(\Rightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x
VT đồng biến với x, VP là hằng số. Nếu phương trình có nghiệm thì kết quả duy nhất là : \(\frac{1}{3}\)
Vậy kết quả của Phương trình có nghiệm là \(\frac{1}{3}\)
P/s: Em ko chắc đâu ạ. Mới lớp 6 thui :v
\(x=\frac{1}{3}\) có thể ghi tất cả phép tính ra và thay dấu = thành dấu - trên may tinh casio rồi nhấn shift tiếp theo nhấn calc rồi chọn số bất kì rồi nhấn bằng đợi một lát rồi nhấn asn rồi nhấn =
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)
\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{x-5}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)
Dễ thấy : \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
Chúc bạn học tốt !!!
copy mà ko hiểu thì copy làm gì
#Lần sau copy nhớ ghi nguồn nếu tôn trọng công sức người khác
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)
\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)
Thấy: \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
ĐK: \(x< 5\)
Nhận xét: \(x=\frac{1}{3}\) nghiệm của phương trình
\(\frac{42}{5-x}\) đồng biến với x. x tăng thì 5-x giảm -> \(\frac{42}{5-x}\) tăng
\(\Rightarrow\sqrt{\frac{42}{5-x}}\) đồng biến với x
\(\Leftrightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x
VT đồng biến với x, VP là hằng số. Nếu Phương Trình nghiệm thì nghiệm duy nhất là:
\(\Rightarrow\)Phương Trình có nghiệm là \(\frac{1}{3}\)