Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a) Ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: \(S_1=\left\{3;-1\right\}\)(1)
Ta có: \(\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: \(S_2=\left\{-3;-1\right\}\)(2)
Từ (1) và (2) suy ra \(S_1\ne S_2\)
hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau
c) x^2 -x-20=0
⇔x2−5x+4x−20=0⇔x2−5x+4x−20=0
⇔(x2+4x)−(5x+20)=0⇔(x2+4x)−(5x+20)=0
⇔x(x+4)−5(x+4)=0⇔x(x+4)−5(x+4)=0
⇔(x+4)(x−5)=0⇔(x+4)(x−5)=0
⇔[x+4=0x−5=0⇔[x=−4x=5⇔[x+4=0x−5=0⇔[x=−4x=5
Vậy...
Bài 3 : Theo bài ra ta có : \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow x=3;2\)(*)
\(x+\left(x-2\right)\left(2x+1\right)=2\)
\(\Leftrightarrow x-2+\left(x-2\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+2\right)=0\Leftrightarrow x=2;-1\)(**)
Dựa vào (*) ; (**) dễ dàng chứng minh được a;b nhé
c, Ko vì phương trình (*) ko có nghiệm -1 hay phương trình (**) ko có nghiệm 3 nên 2 phương trình ko tương đương
. 3x - 1 =0
<=> 3x = 1
<=> x = \(\frac{1}{3}\)
. 6( x + 2) = 3x + 13
<=> 6x + 12 = 3x + 13
<=> 6x -3x = 13-12
<=> 3x = 1
<=> x = \(\frac{1}{3}\)
=> câu B