K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

s = 34

p= 67

23 tháng 3 2020

Bạn có thể giai bai được k, cảm ơn bạn nhiều Kim Ngọc Thảo

10 tháng 1 2019

Phương trình (2m - 1) x 2  - 2(m + 4)x + 5m + 2 = 0 ( m   1 2 )

12 tháng 5 2021

a, Do  \(x=-4\)là một nghiệm của pt trên nên 

Thay \(x=-4\)vào pt trên pt có dạng : 

\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)

Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)

\(\Delta=9-4.\left(-28\right)=9+112=121>0\)

vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)

13 tháng 5 2021

Vậy m=3, và ngiệm còn lại x2=7

NV
3 tháng 5 2021

a. Bạn tự giải

b. 

Pt có 2 nghiệm phân biệt khi:

\(\Delta'=\left(m-3\right)^2-m^2>0\)

\(\Leftrightarrow-6m+9>0\)

\(\Leftrightarrow m< \dfrac{3}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2\end{matrix}\right.\)

29 tháng 9 2018

Bảng biến thiên:

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị ( hình thang trên ).

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

* Khảo sát hàm số Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

+ Tập xác định: D = R\{0}.

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Đường thẳng a = 0 là tiệm cận đứng của đồ thị hàm số.

+ Lại có: Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Do đó, đường thẳng P(a) =1 là tiệm cận ngang của đồ thị hàm số.

+ Đạo hàm: Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Do đó hàm số này nghịch biến trên tập xác định.

Bảng biến thiên

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị hàm số

Giải bài 1 trang 145 sgk Giải tích 12 | Để học tốt Toán 12

21 tháng 5 2020

ư365jn5yb

28 tháng 5 2015

a) x = 0 là nghiệm của phương trình

=> (m-1).02 -2.m.0 + m + 1 = 0

<=> m + 1 = 0 <=> m = -1

vậy m = -1 thì pt có nghiệm là x = 0

b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1

 \(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0

=> phương trình đã cho có 2 nghiệm là:

x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1

+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)

<=> m +1 = 5m - 5

<=> 6 = 4m <=> m = 3/2 (Thoả mãn)

+) Khi đó x1  + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)

21 tháng 5 2020

Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan

Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)

​đen-ta = (-2m)2 - 4.(m-1).(m=1)=4

Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m

10 tháng 5 2017

Vì phương trình đã cho là phương trình bậc hai nên để pt đã cho có nghiệm buộc \(\Delta\)'\(\ge\)0

\(\Leftrightarrow\left(-m-4\right)^2-\left(2m-1\right)\left(5m+2\right)\ge0\)

\(\Leftrightarrow-9m^2+9m+17\ge0\)

Tới đây mình bấm máy tính fx 570vn thì ra còn ai rảnh thì xài bảng xét dấu

\(\Leftrightarrow\dfrac{3-\sqrt{77}}{6}\le m\le\dfrac{3+\sqrt{77}}{6}\)

Vậy với .....

b, Theo hệ thức Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{2\left(m+4\right)}{2m-1}\\P=x_1.x_2=\dfrac{c}{a}=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)

c,Từ \(S=\dfrac{2m+8}{2m-1}\Leftrightarrow S=1+\dfrac{9}{2m-1}\\ \Leftrightarrow\left(S-1\right)\left(2m-1\right)=9\\ \Leftrightarrow2m-1=\dfrac{9}{S-1}\\ \Leftrightarrow m=\dfrac{S+8}{2S-2}\)

Thay \(m=\dfrac{S+8}{2S-2}\) vào \(P=\dfrac{5m+2}{2m-1}\) ta được:

\(P=\dfrac{7S+6}{18}\)

\(\Leftrightarrow18P=7S+6\)

Hay \(18x_1x_2=x_1+x_2+6\)

Vậy ....

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn