K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

làm hộ

6 tháng 1 2022

chị ơi em làm quen nha

21 tháng 7 2021

a) `4x-2>5x+1`

`<=>-x>3`

`<=>x<-3`

b) Theo BĐT Cauchy:

`a^2+b^2 >= 2ab`

Tương tự:

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`

`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)

21 tháng 7 2021

a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)

b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *

13 tháng 10 2017

c 2 x 2 + a 2 - b 2 - c 2 x + b 2 = 0.

Δ = a 2 - b 2 - c 2 2  - 4 b 2 c 2

=  a 2 - b 2 - c 2 2  - 2 b c 2

= ( a 2 - b 2 - c 2  + 2bc)( a 2 - b 2 - c 2  - 2bc)

= [ a 2  - b - c 2 ][ a 2  - b + c 2 ]

= (a + b – c)(a – b + c)(a + b + c)(a – b – c)

Vì a; b; c là độ dài ba cạnh của một tam giác, dựa vào tính chất bất đẳng thức tam giác, ta có: |b – c| < a < b + c.

Do đó a + b + c > 0; a + b – c > 0; a – b + c > 0 còn a – b – c < 0.

Suy ra Δ < 0. Vậy phương trình đã cho vô nghiệm.

18 tháng 11 2018

Phương trình b2x2 – (b2 + c2 – a2)x + c2 = 0

Δ = (b2 + c2 – a2) – b2c2 = (b2 + c2 – a2 + 2bc)(b2 + c2 – a2 – 2bc)

= [(b + c)2 – a2] [(b – c)2 – a2]

= (b + c + a)(b + c – a)(b – c – a)(b – c + a)

Mà a, b, c là ba cạnh của tam giác nên

a + b + c > 0 b + c − a > 0 b − c − a < 0 b + a − c > 0

Nên Δ < 0 với mọi a, b, c

Hay phương trình luôn vô nghiệm với mọi a, b, c

Đáp án cần chọn là: D

2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)

\(\Leftrightarrow a^2x+ab=b^2x-b^2\)

\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)

\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)

\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)

Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)

Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)

Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)

1 tháng 1 2024

1)

\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)

\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)

\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)

\(\Leftrightarrow x=2015\)

Vậy \(S=\left\{2015\right\}\)

 

28 tháng 9 2019

Hoặc b ≠ 0 hoặc c  ≠  0 phương trình có :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9