chứng minh tại sao 0,99999999999999999999999999999...=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔACM có:
AB=AC ( ΔABC cân tại A)
Cạnh AM chung
MB=MC (gt)
⇒ ΔABM=ΔACM (c.c.c)
Vậy ΔABM=ΔACM
b) Vì ΔABM=ΔACM (cmt)
⇒ ∠AMB=∠AMC (2 góc tương ứng)
Ta có:∠AMB+∠AMC=180 ( 2 góc kề bù)
⇒ AMB=AMC=1800/2=900
⇒ AM⊥BC
Vậy AM⊥BC
c) Vì MK⊥AC (gt)
⇒ ∠MKA=∠MKC=900
Vì MH⊥AB (gt)
⇒ ∠MHA=∠MHB=900
Xét ΔHBM và ΔKCM có:
∠MHB∠=MKC=900
MB=MC (gt)
∠HMB∠=KMC (đối đỉnh)
⇒ ΔHBM = ΔKCM (cạnh huyền - góc nhọn)
⇒ BH=CK (2 cạnh tương ứng)
Vậy BH=CK
Mik mỏi tay lám rùi bạn tự làm phần sau nhé
xét ΔABM và ΔACM có:
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACM}\)(ΔABC cân tại A)
BM=CM(M là trung điểm của BC)
⇒ΔABM=ΔACM(c-g-c)
⇒\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)(1)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)(2)
từ (1)và(2)⇒\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^o}{2}=90^o\)
hay AM⊥BC(đ.p.ch/m)
xét 2 tam giác vuông HBM và KCM có
MC=MB(M là trung điểm của BC)
\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)
⇒ΔHBM=ΔKCM(c.huyền.g.nhọn)
⇒BH=CK(2 cạnh tương ứng)
vì BP⊥AC và MK⊥AC⇒BP//MK
vì ΔHBM=ΔKCM nên
⇒\(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng)
Mà \(\widehat{KMC}=\widehat{PBM}\)(2 góc đồng vị)
⇒ΔIBM là tam giác cân(đ.p.ch/m)
vì BP⊥AC và MK⊥AC⇒BP//MK(đ.p.ch/m)
Câu 1: Hai góc đối đỉnh bằng nhau vì chúng cùng kề bù với một góc
Câu 2: Hai đường thẳng phân biệt vuông góc với nhau khi chúng cắt nhau và trong các góc tạo thành, có một góc bằng 90 độ
Câu 3: Hai đường thẳng phân biệt song song với nhau khi chúng không có điểm chung
linh xem ở https://www.baogialai.com.vn/channel/12376/201909/neu-dang-buong-loi-phai-nhat-loi-dan-cua-bac-thi-se-gap-kho-khan-5647921/
2:
a: ΔBAC cân tại B
mà BD là đường cao
nên D là trungd diểm của AC
b: DA=DC=16/2=8cm
=>BD=6cm
c: Xét ΔBMD vuông tại M và ΔBND vuông tại N có
BD chung
góc MBD=góc NBD
=>ΔBMD=ΔBND
=>BM=BN
=>ΔBMN cân tại B
d: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC
a: Xét tứ giác ABMC có
O là trung điêm chung của AM và BC
góc BAC=90 độ
=>ABMC là hình chữ nhật
=>AB=MC và MC//AB
b: ΔACB vuông tại A
mà AO là trung tuyến
nên OA=OB=OC
c: Xet ΔABC vuông tại A có AH là đường cao
nên 1/AH^2=1/AB^2+1/AC^2
Bài 1:
a) Ta có: AB+BD=AD(B nằm giữa A và D)
AC+CE=AE(C nằm giữa A và E)
mà AB=AC(ΔABC cân tại A)
và BD=CE(gt)
nên AD=AE
Xét ΔADE có AD=AE(gt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)
mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị
nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: \(\widehat{ABC}+\widehat{DBC}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ECB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{DBC}=\widehat{ECB}\)
Xét ΔDBC và ΔECB có
DB=EC(gt)
\(\widehat{DBC}=\widehat{ECB}\)(cmt)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: DC=EB(hai cạnh tương ứng)
c) Ta có: ΔDBC=ΔECB(cmt)
nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
⇒KB=KC(Hai cạnh bên)
Ta có: KB+KE=BE(K nằm giữa B và E)
KC+KD=CD(K nằm giữa C và D)
mà KB=KC(cmt)
và BE=CD(cmt)
nên KE=KD
Xét ΔKED có KE=KD(cmt)
nên ΔKED cân tại K(Định nghĩa tam giác cân)
d) Xét ΔBAK và ΔCAK có
BA=CA(ΔABC cân tại A)
AK chung
BK=CK(cmt)
Do đó: ΔBAK=ΔCAK(c-c-c)
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)
mà tia AK nằm giữa hai tia AB,AC
nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)
e) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔABC cân tại A)
mà \(\widehat{ABC}=\widehat{DBM}\)(hai góc đối đỉnh)
và \(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)
nên \(\widehat{DBM}=\widehat{ECN}\)
Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE(gt)
\(\widehat{DBM}=\widehat{ECN}\)(cmt)
Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)
Suy ra: DM=EN(hai cạnh tương ứng)
f) Ta có: ΔDBM=ΔECN(cmt)
nên BM=CN(hai cạnh tương ứng)
Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(cmt)
Do đó: ΔABM=ΔACN(c-g-c)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
a: Ox là trung trực của AB
=>OA=OB
=>ΔOAB cân tại O
b: Oy là trung trực của AC
=>OA=OC
=>ΔOAC cân tại O
c: ΔOAB cân tại O
mà Ox là đường cao
nên Ox là phân giác của góc AOB
ΔOAC cân tại O
mà Oy là đường cao
nen Oy là phân giác của góc AOC
góc BOC=góc AOB+góc AOC
=2*(góc xOA+góc yOA)
=2*45=90 độ
Xét ΔOCB có
góc BOC=90 độ
OB=OC(=OA)
=>ΔOCB vuông cân tại O
1/3=0,33333333333333....(có vô tận c/s 3)
0,333333333333......(vô tận c/s 3 ) x 3 = 0,99999999999..........(vô tận c/s 9 )
0,99999999999..........=0,9999999999999........(vô tận c/s 9 )
tick cho miik
0,9999999..... = 0,(9)
= 0,(1) x 9 = 1/9 * 9 = 1
Vậy 0,99999........ = 1