A=1/7+1/7^2+1/7^3+...+1/7^100
Các bạn ơi giúp mink với ai đúng mik k cho !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-2+3-4+5-6+...+99-100+101
= (1+3+5+...+101) - (2+4+6+...+100)
tu 1 den 101 co : (101-1):2+1=51
1+..+101 = (1+101)x 51:2= 2601
tu 2 den 100 co : (100-2);2+1=50
2+...+100 = (100 +2) x 50:2=2550
=> A= 2601-2550=51
học tốt
Giải thích các bước giải:
M= (7201272012+7979-1414)÷(5959-312312-1212
= 2405452724054527 ÷ (−736−736)
= 2405452724054527 × (−367−367)
= −96203521−96203521
Chúc bạn học tốt !
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
\(\frac{-3}{-9}\)+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{26}{14}\)
=+\(\frac{8}{7}\)+\(\frac{1}{-3}\)+\(\frac{13}{7}\)
=\(\frac{1}{3}\)+\(\frac{1}{-3}\)+\(\frac{8}{7}\)+\(\frac{13}{7}\)
=0+\(\frac{8}{7}\)+\(\frac{13}{7}\)
=\(\frac{21}{7}\)
=3
a, -1+3 - 5 + 7 - ...... +97 - 99
[ - 1+ 3] - [ 5 + 7] - .... - [ 95 + 97] - 99
[2 - 12] - ..... - [184 - 192] - 99
còn lại tự giải
Ta có :\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow\frac{1}{7}A=\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+...+\frac{1}{7^{101}}\)
\(\Rightarrow A-\frac{1}{7}A=\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+...+\frac{1}{7^{101}}\right)\)
\(\Leftrightarrow\frac{6}{7}A=\frac{1}{7}-\frac{1}{7^{101}}\)
\(\Leftrightarrow\frac{6}{7}A=\frac{7^{100}-1}{7^{101}}\)
\(\Leftrightarrow A=\frac{7^{100}-1}{6.7^{100}}\)
Vậy ...