tìm x :
25<2^x<3125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(25< 2^x< 3125\)
\(\Rightarrow32\le2^x\le2048\)
\(\Rightarrow2^5\le2^x\le2^{11}\)
\(\Rightarrow5\le x\le11\)
\(\Rightarrow x\in\left\{5;6;7;8;9;10;11\right\}\)
Ta có 25 = 32 > 25 ( Vì 25-1 < 25)
Và 211 = 2024 < 3125 (Vì 211+1 > 3125)
Nên nghiệm của bất pt là x = { 5; 6; 7; 8; 9; 10; 11}
Bạn ơi hình như sai đề bài rồi. Phải là 5x chứ. Mk ngồi từ nãy giờ tính ko ra.
Ta có :
25 < 2^x < 3125
Suy ra : 5^2 < 2^x < 5^5
Không liên quan gì bạn ơi
Ta có:
a)\(25< 2^x< 3125\)
\(\Rightarrow2^4< 2^x< 2^{12}\)
\(\Rightarrow4< x< 12\)
b)\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=7450\)
\(\Rightarrow100x+5050=7450\Rightarrow10x=2400\Rightarrow x=240\)
c)\(1+2+3+..+x=\frac{x\left(x+1\right)}{2}=78.\)
\(\Rightarrow x\left(x+1\right)=156\)\(\Rightarrow x=12\)
d)\(12x+13x=25x=2000\Rightarrow x=80\)
e)\(6x+4x=10x=2010\Rightarrow x=201\)
\(25\le5^n< 3125\)
\(\Rightarrow5^2\le5^n< 5^5\)
\(\Rightarrow2\le n< 5\)
Vậy \(n=\left\{2;3;4\right\}\)
a) \(9< 3^x< 243\)
\(\Leftrightarrow3^2< 3^x< 3^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
b) Sửa đề: \(3^4.3^x\div9=27\)
\(\Leftrightarrow3^{x+4}=3\)
\(\Rightarrow x+4=1\)
\(\Rightarrow x=-3\)
c) \(3^x\div3^2=243\)
\(\Leftrightarrow3^{x-2}=3^5\)
\(\Rightarrow x-2=5\)
\(\Rightarrow x=7\)
d) \(25< 5^x< 3125\)
\(\Leftrightarrow5^2< 5^x< 5^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(2^x-64=2^6\)
\(\Leftrightarrow2^x=64+64=128\)
\(\Leftrightarrow2^x=2^7\)
\(\Rightarrow x=7\)
f) \(2^x\div16=128\)
\(\Leftrightarrow2^x=2^7.2^4\)
\(\Leftrightarrow2^x=2^{11}\)
\(\Rightarrow x=11\)
\(25< 5^x< 3125\)
\(\Leftrightarrow5^2\le5^x< 5^5\)
\(\Leftrightarrow2\le x< 5\)
\(\Leftrightarrow x\in\left\{2;3;4\right\}\)
Vậy \(x\in\left\{2;3;4\right\}\) là giá trị cần tìm
\(25\le5^x< 3125\)
\(\Leftrightarrow5^2\le5^x< 5^5\)
\(\Rightarrow2\le x< 5\)
\(\Rightarrow x=\left\{2;3;4\right\}\)