Các bạn giúp mình bài này zới
1) y/y+2 - 3/y-2 = y^2+8/y^2-4
2) 7/2x-3 + 1/2x-2= 3/x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>x+y=5=> y=5-x
\(!x+1!+!3-x!\ge!x+1+3-x!=4\)
đẳng thức khi -1<=x<=3
=> xem lại đề
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y
= - xy
= \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)
= \(\frac{1}{2}\)
mk đang bận mấy câu kia tương tự nha
Câu 1:
(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0
=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0
=> 2015.2x + (1 + 2 + ... + 2015) = 0
=> 4030x + (2015 + 1).2015:2 = 0
=> 4030x + 2031120 = 0
=> x = -504
Câu 2:
x - y = 8; y - z = 10; x + z = 12
=> (x - y) + (y - z) = 8 + 10 = 18
=> x - z = 18
=> x = (12 + 18) : 2 = 15
=> z = 15 - 18 = -3
=> y = 15 - 8 = 7
=> x + y + z = 15 + 7 + (-3) = 19
#)Giải :
Bài 1 :
a) Ta có :
\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)
Vậy x = 14; y = 20; z = 32
1) y/(y + 2) - 3/(y - 2) = (y^2 + 8)/(y^2 - 4)
<=> y/(y + 2) - 3/(y - 2) = (y^2 + 8)/((y - 2)(y + 2))
<=> y(y - 2) - 3(y + 2) = y^2 + 8
<=> y^2 - 2y - 3y - 6 = y^2 + 8
<=> y^2 - 5y - 6 = y^2 + 8
<=> -5y - 6 = 8
<=> -5y = 8 + 6
<=> -5y = 14
<=> y = -14/5
2) 7/(2x - 3) + 1/(2x - 2) = 3/(x - 1)
<=> 14(x - 1) + 2x - 3 = 6(2x - 3)
<=> 14x - 14 + 2x - 3 = 12x - 18
<=> 16x - 17 = 12x - 18
<=> 16x - 17 - 12x = -18
<=> 4x - 17 = -18
<=> 4x = -18 + 17
<=> 4x = -1
<=> x = -1/4