K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0

a) Xét \(\Delta ABC\)có : \(AB=AC\Rightarrow\Delta ABC\)cân

Có BM và CN là đường trung tuyến của tam giác \(\Rightarrow AM=AN=BN=CN\)

Xét \(\Delta AMB\)và \(\Delta ANC\)có : \(\hept{\begin{cases}AM=AN\left(cmt\right)\\\widehat{mAn}:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta AMB=\Delta ANC\left(c\cdot g\cdot c\right)}\)

b) Vì 2 đường trung tuyến BM và CN cắt nhau tại G => G là trọng tâm của \(\DeltaÂBC\)

=> AG là đường trung tuyến còn lại

mà \(\Delta ABC\)cân => AG vừa là đường trung tuyến và vừa là đường cao

\(\Rightarrow AG\perp BC\)hay \(AH\perp BC\)

a: AC=AB=15cm

MC=15-9=6cm

Xét ΔBACcó BM là phân giác

nên AM/AB=MC/BC

=>6/BC=9/15=3/5

=>BC=10cm

b: Xét ΔABM và ΔACN có

góc ABM=góc ACN

AB=AC

góc BAM chung

=>ΔABM=ΔACN

=>AM=AN

Xét ΔABC có AN/AB=AM/AC

nên MN//BC

c: Xét ΔABC cóMN//BC

nên AM/AC=MN/BC

=>MN/10=9/15=3/5

=>MN=6cm

12 tháng 2 2020

EZ thôi,vài đường cơ bản;gộp lại cho nó máu ! À mà tính BD chứ nhỉ ??

A B C x y x D E

Kẻ CE là phân giác góc C cắt BD tại E

Đặt EC=x thì BE=x;đặt ED=y

Áp dụng tính chất đường phân giác ta có:

\(\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}\left(cm\right)\) khi đó \(DA=3a;DC=2a\)

Ta có:\(15=AC=DA+DC=3a+2a=5a\Rightarrow a=3\)

\(\Rightarrow DA=9;DC=6\)

Dễ thấy \(\Delta EDC~\Delta CDB\left(g.g\right)\Rightarrow\frac{ED}{CD}=\frac{DC}{DB}=\frac{EC}{CB}\)

hay \(\frac{y}{6}=\frac{6}{BD}=\frac{x}{10}=\frac{x+y}{10+6}=\frac{x+y}{16}=\frac{BD}{16}\)

\(\Rightarrow BD^2=96\Rightarrow BD=\sqrt{96}\) số khá xấu,ko bt có nhầm lẫn đâu chăng ??

13 tháng 1 2019

a) Sửa đề: Cm AG vuông góc với BC

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔNBC và ΔMCB có 

NB=MC(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔNBC=ΔMCB(c-g-c)

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)

nên ΔGBC cân tại G(Định lí đảo của tam giác cân)

Suy ra: GB=GC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: GB=GC(cmt)

nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC(đpcm)