Cho hcn ABCD .Qua A vẽ Ax//BD,Ax cắt đường thẳng CB tại E
a)CM:ABDE là hbh.
b)CM:tam giác ACE cân
c)Vẽ AM \(\perp\)BD(M\(\varepsilon\)BD) ,BN\(\perp\)AE (N thuộc AE).CM:AMBN là hcn
_Giup vs _
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a trứng rán cần mỡ bắp cần bơ yêu ko cần cớ cần cậu cơ
a, HS tự chứng minh
b, HS tự chứng minh
c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I
d, HS tự chứng minh
a) Xét tam giác ABC có: OE // BC (gt).
\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)
Xét tam giác ACD có: OF // CD (gt).
\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)
Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)
\(\Rightarrow\) EF // BD (định lý Talet đảo).
a) Ta có
C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0
Vậy tứ giác AOHC nội tiếp.
b) Ta có C A D ⏜ = A E C ⏜ , A C E ⏜ chung suy ra Δ A C D ~ Δ E C A (g.g)
⇒ C A C E = A D A E ⇒ A C . A E = A D . C E
c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .
Vì tứ giác AOHC nội tiếp ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .
Suy ra tứ giác AHIE nội tiếp ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .
Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF
=> O là trung điểm của đoạn thẳng MN.
Suy ra tứ giác AMBN là hình bình hành => AM//BN.
a)Sai đề Sửa lại ADBE là hbh
Ta có AD//EB(vì AD//BC)
AE//BD(Vì Ax//BD)
=>ADBE là hbh(đpcm)
b)Vì ADBE là hbh =>AE=BD=>AC=AE=>ΔACE cân
c)Dễ dang C/m được △AMB=△ANB
=>AN=MB(1)
Mà AN//MB(vì AE//BD)(2)
Lại có ∠ANB=∠AMB(3)
Từ (1)(2)(3)=>AMBN là hcn